answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi

Add your answer:

Earn +20 pts
Q: What term is given to the net figure that results from vector?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What term is given to the net figue that results from vector addition?

It is a translation on the Cartesian plane


What is an under vector room?

There does not seem to be an under vector room, but there is vector space. Vector space is a structure that is formed by a collection of vectors. This is a term in mathematics.


What is another term to the size of a vector?

That is often called the magnitude.


A term for a geometric figure that encloses another geometric figure?

circumscribed


How do you find a normal vector?

A normal vector is a vector that is perpendicular or orthogonal to another vector. That means the angle between them is 90 degrees which also means their dot product if zero. I will denote (a,b) to mean the vector from (0,0) to (a,b) So let' look at the case of a vector in R2 first. To make it general, call the vector, V=(a,b) and to find a vector perpendicular to v, i.e a normal vector, which we call (c,d) we need ac+bd=0 So say (a,b)=(1,0), then (c,d) could equal (0,1) since their dot product is 0 Now say (a,b)=(1,1) we need c=-d so there are an infinite number of vectors that work, say (2,-2) In fact when we had (1,0) we could have pick the vector (0,100) and it is also normal So there is always an infinite number of vectors normal to any other vector. We use the term normal because the vector is perpendicular to a surface. so now we could find a vector in Rn normal to any other. There is another way to do this using the cross product. Given two vectors in a plane, their cross product is a vector normal to that plane. Which one to use? Depends on the context and sometimes both can be used!