A normal vector is a vector that is perpendicular or orthogonal to another vector. That means the angle between them is 90 degrees which also means their dot product if zero. I will denote (a,b) to mean the vector from (0,0) to (a,b) So let' look at the case of a vector in R2 first. To make it general, call the vector, V=(a,b) and to find a vector perpendicular to v, i.e a normal vector, which we call (c,d) we need ac+bd=0 So say (a,b)=(1,0), then (c,d) could equal (0,1) since their dot product is 0 Now say (a,b)=(1,1) we need c=-d so there are an infinite number of vectors that work, say (2,-2) In fact when we had (1,0) we could have pick the vector (0,100) and it is also normal So there is always an infinite number of vectors normal to any other vector. We use the term normal because the vector is perpendicular to a surface. so now we could find a vector in Rn normal to any other. There is another way to do this using the cross product. Given two vectors in a plane, their cross product is a vector normal to that plane. Which one to use? Depends on the context and sometimes both can be used!
Chat with our AI personalities
The normal vector to the surface is a radius at the point of interest.
Given one vector a, any vector that satisfies a.b=0 is orthogonal to it. That is a set of vectors defining a plane orthogonal to the original vector.The set of vectors defines a plane to which the original vector a is the 'normal'.
The Resultant Vector minus the other vector
In a plane, each vector has only one orthogonal vector (well, two, if you count the negative of one of them). Are you sure you don't mean the normal vector which is orthogonal but outside the plane (in fact, orthogonal to the plane itself)?
We get the Unit Vector