There is no such thing as "the usual sampling distribution". Different distributions of the original random variables will give different distributions for the difference between their means.There is no such thing as "the usual sampling distribution". Different distributions of the original random variables will give different distributions for the difference between their means.There is no such thing as "the usual sampling distribution". Different distributions of the original random variables will give different distributions for the difference between their means.There is no such thing as "the usual sampling distribution". Different distributions of the original random variables will give different distributions for the difference between their means.
No, they are two very different distributions.
There may or may not be a benefit: it depends on the underlying distributions. Using the standard normal distribution, whatever the circumstances is naive and irresponsible. Also, it depends on what parameter you are testing for. For comparing whether or not two distributions are the same, tests such as the Kolmogorov-Smirnov test or the Chi-Square goodness of fit test are often better. For testing the equality of variance, an F-test may be better.
The answer will depend on what the question actually is!
You cannot. There are hundreds of different distributions. The shapes of the distributions depend on their parameters so that the same distribution can be symmetric when the parameters have some specific value, but is highly skewed - in either direction - for other values.
There is no such thing as "the usual sampling distribution". Different distributions of the original random variables will give different distributions for the difference between their means.There is no such thing as "the usual sampling distribution". Different distributions of the original random variables will give different distributions for the difference between their means.There is no such thing as "the usual sampling distribution". Different distributions of the original random variables will give different distributions for the difference between their means.There is no such thing as "the usual sampling distribution". Different distributions of the original random variables will give different distributions for the difference between their means.
No, they are two very different distributions.
There may or may not be a benefit: it depends on the underlying distributions. Using the standard normal distribution, whatever the circumstances is naive and irresponsible. Also, it depends on what parameter you are testing for. For comparing whether or not two distributions are the same, tests such as the Kolmogorov-Smirnov test or the Chi-Square goodness of fit test are often better. For testing the equality of variance, an F-test may be better.
The answer will depend on what the question actually is!
You cannot. There are hundreds of different distributions. The shapes of the distributions depend on their parameters so that the same distribution can be symmetric when the parameters have some specific value, but is highly skewed - in either direction - for other values.
Z-scores standardize data from various distributions by transforming individual data points into a common scale based on their mean and standard deviation. This process involves subtracting the mean from each data point and dividing by the standard deviation, resulting in a distribution with a mean of 0 and a standard deviation of 1. This transformation enables comparisons across different datasets by converting them to the standard normal distribution, facilitating statistical analysis and interpretation.
Yes. Normal (or Gaussian) distribution are parametric distributions and they are defined by two parameters: the mean and the variance (square of standard deviation). Each pair of these parameters gives rise to a different normal distribution. However, they can all be "re-parametrised" to the standard normal distribution using z-transformations. The standard normal distribution has mean 0 and variance 1.
The normal distribution, also known as the Gaussian distribution, has a familiar "bell curve" shape and approximates many different naturally occurring distributions over real numbers.
There are at least 300 different distributions, and the open-source model of the kernel allows you to make your own distribution.
No, a bimodal distribution is characterized by having two distinct modes, or peaks, in its probability distribution. This differs from a unimodal distribution, which has only one mode. Bimodal distributions can indicate the presence of two different underlying processes or populations within the data.
You make comparisons between their mean or median, their spread - as measured bu the inter-quartile range or standard deviation, their skewness, the underlying distributions.
Yes. And that is true of most probability distributions.