Q: When is the magnitude of the sum of vectors A+B greater than that of A-BWhen is the magnitude of A-B greater than that of A+B?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

No.

The resultant vector IS the sum of the individual vectors. Its magnitudecan be the sum of their individual magnitudes or less, but not greater.

Assuming you mean sum and not some, the answer is No.

yeah, it can. for example consider two antiparallel vectors of magnitude 5,3 whose resultant is 2, which is smaller than both components.....

Yes. As an extreme example, if you add two vectors of the same magnitude, which point in the opposite direction, you get a vector of magnitude zero as a result.

Related questions

No.

Yes, the magnitude of the difference between two vectors can be greater than the magnitude of either vector. This can occur when the vectors are in opposite directions or have different magnitudes such that the resulting difference vector is longer than either of the original vectors.

A vector component can never be greater than the vector's magnitude. The magnitude of a vector is the length of the vector and is always greater than or equal to any of its individual components.

No.

The resultant vector IS the sum of the individual vectors. Its magnitudecan be the sum of their individual magnitudes or less, but not greater.

The angle between vectors A and B must be 90 degrees for the magnitude of A + B to be greater than the magnitude of A - B. At this angle, the maximum difference between the magnitudes of A + B and A - B occurs, maximizing the difference.

No, the statement is incorrect. The sum of two vectors of equal magnitude will not equal the magnitude of either vector. The sum of two vectors of equal magnitude will result in a new vector that is larger than the original vectors due to vector addition. The magnitude of the difference between the two vectors will be smaller than the magnitude of either vector.

Assuming you mean sum and not some, the answer is No.

yeah, it can. for example consider two antiparallel vectors of magnitude 5,3 whose resultant is 2, which is smaller than both components.....

Yes. As an extreme example, if you add two vectors of the same magnitude, which point in the opposite direction, you get a vector of magnitude zero as a result.

No, the magnitude of the difference between two vectors cannot be greater than the magnitude of their sum. This is due to the triangle inequality, which states that the magnitude of the sum of two vectors is always greater than or equal to the magnitude of their difference.

Magnitude means size. The magnitude of 8 is greater than the magnitude of 4. The magnitude of 1023209138109283 is greater than the magnitude of 12. =)) .... enjoyy... =D