Scalar product = (magnitude of 'A') times (magnitude of 'B') times (cosine of the angle between 'A' and 'B')
It depends on the type of product used. A dot or scalar product of two vectors will result in a scalar. A cross or vector product of two vectors will result in a vector.
No. The vector resultant of addition of vectors is the vector that would connect the tail of the first vector to the head of the last. For any set of vectors to add to the zero vector, the endpoint of the last vector added must be coincident with the start point of the first. Therefore for the sum of only two vectors to have a chance of being the zero vector, the second vector must be in a direction exactly opposite the first. So you can tell that the result of adding the two vectors could only can be zero vector if the two vectors were of two equal magnitude.
(A1) The dot product of two vectors is a scalar and the cross product is a vector? ================================== (A2) The cross product of two vectors, A and B, would be [a*b*sin(alpha)]C, where a = |A|; b = |B|; c = |C|; and C is vector that is orthogonal to A and B and oriented according to the right-hand rule (see the related link). The dot product of the two vectors, A and B, would be [a*b*cos(alpha)]. For [a*b*sin(alpha)]C to equal to [a*b*cos(alpha)], we have to have a trivial solution -- alpha = 0 and either a or b be zero, so that both expressions are zeroes but equal. ================================== Of course one is the number zero( scalar), and one is the zero vector. It is a small difference but worth mentioning. That is is to say if a or b is the zero vector, then a dot b must equal zero as a scalar. And similarly the cross product of any vector and the zero vector is the zero vector. (A3) The magnitude of the dot product is equal to the magnitude of the cross product when the angle between the vectors is 45 degrees.
I think you meant to ask for finding a perpendicular vector, rather than parallel. If that is the case, the cross product of two non-parallel vectors will produce a vector which is perpendicular to both of them, unless they are parallel, which the cross product = 0. (a zero vector)
Scalar product = (magnitude of 'A') times (magnitude of 'B') times (cosine of the angle between 'A' and 'B')
The vector product (cross product) of two vectors will be zero when the vectors are parallel or antiparallel to each other. This means the vectors are either pointing in the same direction (parallel) or in opposite directions (antiparallel).
It depends on the type of product used. A dot or scalar product of two vectors will result in a scalar. A cross or vector product of two vectors will result in a vector.
No. The vector resultant of addition of vectors is the vector that would connect the tail of the first vector to the head of the last. For any set of vectors to add to the zero vector, the endpoint of the last vector added must be coincident with the start point of the first. Therefore for the sum of only two vectors to have a chance of being the zero vector, the second vector must be in a direction exactly opposite the first. So you can tell that the result of adding the two vectors could only can be zero vector if the two vectors were of two equal magnitude.
(A1) The dot product of two vectors is a scalar and the cross product is a vector? ================================== (A2) The cross product of two vectors, A and B, would be [a*b*sin(alpha)]C, where a = |A|; b = |B|; c = |C|; and C is vector that is orthogonal to A and B and oriented according to the right-hand rule (see the related link). The dot product of the two vectors, A and B, would be [a*b*cos(alpha)]. For [a*b*sin(alpha)]C to equal to [a*b*cos(alpha)], we have to have a trivial solution -- alpha = 0 and either a or b be zero, so that both expressions are zeroes but equal. ================================== Of course one is the number zero( scalar), and one is the zero vector. It is a small difference but worth mentioning. That is is to say if a or b is the zero vector, then a dot b must equal zero as a scalar. And similarly the cross product of any vector and the zero vector is the zero vector. (A3) The magnitude of the dot product is equal to the magnitude of the cross product when the angle between the vectors is 45 degrees.
I think you meant to ask for finding a perpendicular vector, rather than parallel. If that is the case, the cross product of two non-parallel vectors will produce a vector which is perpendicular to both of them, unless they are parallel, which the cross product = 0. (a zero vector)
The minimum number of vectors with unequal magnitudes whose vector sum can be zero is two. These vectors must have magnitudes and directions that cancel out when added together to result in a zero vector sum.
The scalar product (dot product) of two vectors results in a scalar quantity, representing the magnitude of the projection of one vector onto the other. The vector product (cross product) of two vectors results in a vector quantity that is perpendicular to the plane formed by the two input vectors, with a magnitude equal to the area of the parallelogram they span.
Because there are two different ways of computing the product of two vectors, one of which yields a scalar quantity while the other yields a vector quantity.This isn't a "sometimes" thing: the dot product of two vectors is always scalar, while the cross product of two vectors is always a vector.
Scalar product (or dot product) is the product of the magnitudes of two vectors and the cosine of the angle between them. It results in a scalar quantity. Vector product (or cross product) is the product of the magnitudes of two vectors and the sine of the angle between them, which results in a vector perpendicular to the plane containing the two original vectors.
Two vectors, no; three vectors yes.
Two is the minimum number of vectors that will sum to zero.