answersLogoWhite

0


Best Answer

Because there are two different ways of computing the product of two vectors, one of which yields a scalar quantity while the other yields a vector quantity.

This isn't a "sometimes" thing: the dot product of two vectors is always scalar, while the cross product of two vectors is always a vector.

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Why the product of two vectors is sometime scalar and sometime vector?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the product of two vector quantities?

It depends on the type of product used. A dot or scalar product of two vectors will result in a scalar. A cross or vector product of two vectors will result in a vector.


What is the value of scalar product of two vectors A and B where value of vector A and B is not zero and vector product of two vectors A and B is not zero?

Scalar product = (magnitude of 'A') times (magnitude of 'B') times (cosine of the angle between 'A' and 'B')


1 For the two vectors find the scalar product AB and the vector product?

For two vectors A and B, the scalar product is A.B= -ABcos(AB), the minus sign indicates the vectors are in the same direction when angle (AB)=0; the vector product is ABsin(AB). Vectors have the rule: i^2= j^2=k^2 = ijk= -1.


What is scalar and vector product?

The scalar product of two vectors, A and B, is a number, which is a * b * cos(alpha), where a = |A|; b = |B|; and alpha = the angle between A and B. The vector product of two vectors, A and B, is a vector, which is a * b * sin(alpha) *C, where C is unit vector orthogonal to both A and B and follows the right-hand rule (see the related link). ============================ The scalar AND vector product are the result of the multiplication of two vectors: AB = -A.B + AxB = -|AB|cos(AB) + |AB|sin(AB)UC where UC is the unit vector perpendicular to both A and B.


Why work is scalar but product of two vector?

The product of two vectors can be done in two different ways. The result of one way is another vector. The result of the other way is a scalar ... that's why that method is called the "scalar product". The way it's done is (magnitude of one vector) times (magnitude of the other vector) times (cosine of the angle between them).

Related questions

What is the product of two vector quantities?

It depends on the type of product used. A dot or scalar product of two vectors will result in a scalar. A cross or vector product of two vectors will result in a vector.


What is the difference between scalar and vector products of two vectors?

The scalar product (dot product) of two vectors results in a scalar quantity, representing the magnitude of the projection of one vector onto the other. The vector product (cross product) of two vectors results in a vector quantity that is perpendicular to the plane formed by the two input vectors, with a magnitude equal to the area of the parallelogram they span.


What is scalar and vector product simplify?

Scalar product (or dot product) is the product of the magnitudes of two vectors and the cosine of the angle between them. It results in a scalar quantity. Vector product (or cross product) is the product of the magnitudes of two vectors and the sine of the angle between them, which results in a vector perpendicular to the plane containing the two original vectors.


Is it possible to multiply a vector quantity to a scalar quantity?

The product of scalar and vector quantity is scalar.


What is the product of vector and scalar?

The product of a vector and a scalar is a new vector whose magnitude is the product of the magnitude of the original vector and the scalar, and whose direction remains the same as the original vector if the scalar is positive or in the opposite direction if the scalar is negative.


Can a scalar quantity be the product of 2 vector quantities?

No, a scalar quantity cannot be the product of two vector quantities. Scalar quantities have only magnitude, while vector quantities have both magnitude and direction. When two vectors are multiplied, the result is a vector, not a scalar.


What is the value of scalar product of two vectors A and B where value of vector A and B is not zero and vector product of two vectors A and B is not zero?

Scalar product = (magnitude of 'A') times (magnitude of 'B') times (cosine of the angle between 'A' and 'B')


Is the cross product vector or scalar?

The cross product is a vector. It results in a new vector that is perpendicular to the two original vectors being multiplied.


1 For the two vectors find the scalar product AB and the vector product?

For two vectors A and B, the scalar product is A.B= -ABcos(AB), the minus sign indicates the vectors are in the same direction when angle (AB)=0; the vector product is ABsin(AB). Vectors have the rule: i^2= j^2=k^2 = ijk= -1.


Why the work is scalar quantity?

Work is the product of a force and a displacement. Both of those are vectors. There are two ways to multiply vectors. One of them produces another vector, the other produces a scalar. The calculation for 'work' uses the scalar product. The procedure is: (magnitude of one vector) times (magnitude of the other vector) times (cosine of the angle between them).


Multiplying or dividing vectors by scalars results in?

Vectors. A scalar times a vectro is a vector. A vector times a vector is a scalr if the vectros are parallel v1.v2 = scalar. A vector times a vector is a vector if the vectors are perpendicular. Other wise a vectro times a vector is both a scalr and a vector, v1v2 = -v1.v2 + v1xv2 = -v1v2cos(x) + vqv2sin(x). If cos(x) =0 then perpendicular if sin(x)=0 then parallel. In general the product of two vectors is a quaternion the sum of a scalar and a vector. The Universe is composed of quaternions. Science and Physics has failed to appreciate that the numbes of the universe are quaternions, the sum of a scaltr and a vector. Hamilton invented quaternions in 1843.


Can vector quantity be divided and multiplied?

Vector quantities can be added and subtracted using vector addition, but they cannot be divided like scalar quantities. However, vectors can be multiplied in two ways: by scalar multiplication, where a scalar quantity is multiplied by the vector to change its magnitude, or by vector multiplication, which includes dot product and cross product operations that result in a scalar or vector output.