The sine and cosine were originally developed for use in surveying. They provided a way to measure the distance across lakes and around mountains. Soon they were found to be useful in navigation. The sine was used to calculate pi. When electrical measurements were made, the sine law was used. If you want to know when to use the sine and when to use the cosine, you will need to get a trig book, a physics book, an astronomy book, a sailing book, and a few other books and read them all.
sin(3A) = sin(2A + A) = sin(2A)*cos(A) + cos(2A)*sin(A)= sin(A+A)*cos(A) + cos(A+A)*sin(A) = 2*sin(A)*cos(A)*cos(A) + {cos^2(A) - sin^2(A)}*sin(A) = 2*sin(A)*cos^2(A) + sin(a)*cos^2(A) - sin^3(A) = 3*sin(A)*cos^2(A) - sin^3(A)
Like normal expansion of brackets, along with: cos(A + B) = cos A cos B - sin A sin B sin(A + B) = sin A cos B + cos A sin B 5(cos 20 + i sin 20) × 8(cos 15 + i sin 15) = 5×8 × (cos 20 + i sin 20)(cos 15 + i sin 15) = 40(cos 20 cos 15 + i sin 15 cos 20 + i cos 15 sin 20 + i² sin 20 sin 15) = 40(cos 20 cos 15 - sin 20 cos 15 + i(sin 15 cos 20 + cos 15 sin 20)) = 40(cos(20 +15) + i sin(15 + 20)) = 40(cos 35 + i sin 35)
cos*cot + sin = cos*cos/sin + sin = cos2/sin + sin = (cos2 + sin2)/sin = 1/sin = cosec
We use the dot product cos and in vector we use the vector product sin because of the trigonometric triangle.
To show that (cos tan = sin) ??? Remember that tan = (sin/cos) When you substitute it for tan, cos tan = cos (sin/cos) = sin QED
[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,
sin(3A) = sin(2A + A) = sin(2A)*cos(A) + cos(2A)*sin(A)= sin(A+A)*cos(A) + cos(A+A)*sin(A) = 2*sin(A)*cos(A)*cos(A) + {cos^2(A) - sin^2(A)}*sin(A) = 2*sin(A)*cos^2(A) + sin(a)*cos^2(A) - sin^3(A) = 3*sin(A)*cos^2(A) - sin^3(A)
Using Euler's Formula, you use (cos(x) + i sin(x))^n = cos (nx) + i sin(nx) Now you let n=3 (cos(x) + i sin (x))3 = cos(3x) + i sin (3x) (cos(x))3 + 3(cos(x))2 * i sin(x) + 3cos(x) * i2 (sin(x))3 = cos(3x)+ i sin(3x) (cos(x))3 + i(3sin(x)(cos (x))2) - 3cos(x)(sin(x)2) - i(sin(x))3 = cos (3x) + i sin(3x) Now only use the terms with i in them to figure out what sin(3x) is... 3sin(x)(cos(x))2 - (sin(x))3 = sin(3x) Hope this helps! :D
You need to make use of the formulae for sin(A+B) and cos(A+B), and that cos is an even function: sin(A+B) = cos A sin B + sin A cos B cos(A+B) = cos A cos B - sin A sin B cos even fn → cos(-x) = cos(x) To prove: (cos A + sin A)(cos 2A + sin 2A) = cos A + sin 3A The steps are to work with the left hand side, expand the brackets, collect [useful] terms together, apply A+B formula above (backwards) and apply even nature of cos function: (cos A + sin A)(cos 2A + sin 2A) = cos A cos 2A + cos A sin 2A + sin A cos 2A + sin A sin 2A = (cos A cos 2A + sin A sin 2A) + (cos A sin 2A + sin A cos 2A) = cos(A - 2A) + sin(A + 2A) = cos(-A) + sin 3A = cos A + sin 3A which is the right hand side as required.
(2 sin^2 x - 1)/(sin x - cos x) = sin x + cos x (sin^2 x + sin^2 x - 1)/(sin x - cos x) =? sin x + cos x [sin^2 x - (1 - sin^2 x)]/(sin x - cos x) =? sin x + cos x (sin^2 x - cos^2 x)/(sin x - cos x) =? sin x + cos x [(sin x - cos x)(sin x + cos x)]/(sin x - cos x) =? sin x + cos x sin x + cos x = sin x + cos x
Like normal expansion of brackets, along with: cos(A + B) = cos A cos B - sin A sin B sin(A + B) = sin A cos B + cos A sin B 5(cos 20 + i sin 20) × 8(cos 15 + i sin 15) = 5×8 × (cos 20 + i sin 20)(cos 15 + i sin 15) = 40(cos 20 cos 15 + i sin 15 cos 20 + i cos 15 sin 20 + i² sin 20 sin 15) = 40(cos 20 cos 15 - sin 20 cos 15 + i(sin 15 cos 20 + cos 15 sin 20)) = 40(cos(20 +15) + i sin(15 + 20)) = 40(cos 35 + i sin 35)
cos*cot + sin = cos*cos/sin + sin = cos2/sin + sin = (cos2 + sin2)/sin = 1/sin = cosec
sin cubed + cos cubed (sin + cos)( sin squared - sin.cos + cos squared) (sin + cos)(1 + sin.cos)
There are two ways to solve for the double angle formulas in trigonometry. The first is to use the angle addition formulas for sine and cosine. * sin(a + b) = sin(a)cos(b) + cos(a)sin(b) * cos(a + b) = cos(a)cos(b) - sin(a)sin(b) if a = b, then * sin(2a) = sin(a)cos(a) + cos(a)sin(a) = 2sin(a)cos(a) * cos(2a) = cos2(a) - sin2(b) The cooler way to solve for the double angle formulas is to use Euler's identity. eix = cos(x) + i*sin(x). Yes, that is "i" as in imaginary number. we we put 2x in for x, we get * e2ix = cos(2x) + i*sin(2x) This is the same as * (eix)2 = cos(2x) + i*sin(2x) We can substitute our original equation back in for eix. * (cos(x) + i*sin(x))2 = cos(2x) + i*sin(2x) We can distribute the squared term. * cos2(x) + i*sin(x)cos(x) + i*sin(x)cos(x) + (i*sin(x))2 = cos(2x) + i*sin(2x) And simplify. Because i is SQRT(-1), the i squared term becomes negative. * cos2(x) + 2i*sin(x)cos(x) - sin2(x) = cos(2x) + i*sin(2x) * cos2(x) - sin2(x) + 2i*sin(x)cos(x) = cos(2x) + i*sin(2x) Now you can plainly see both formulas in the equation arranged quite nicely. I don't yet know how to get rid of the i, but I'm working on it.
Best way: Use angle addition. Sin(Ax)Cos(Bx) = (1/2) [sin[sum x] + sin[dif x]], where sum = A+B and dif = A-B To show this, Sin(Ax)Cos(Bx) = (1/2) [sin[(A+B) x] + sin[(A-B) x]] = (1/2) [(sin[Ax]Cos[Bx]+sin[Bx]cos[Ax]) + (sin[Ax]cos[-Bx]+sin[-Bx]cos[Ax])] Using the facts that cos[-k] = cos[k] and sin[-k] = -sin[k], we have: (1/2) [(sin[Ax]Cos[Bx]+sin[Bx]cos[Ax]) + (sin[Ax]cos[-Bx]+sin[-Bx]cos[Ax])] (1/2) [(sin[Ax]Cos[Bx]+sin[Bx]cos[Ax]) + (sin[Ax]cos[Bx]-sin[Bx]cos[Ax])] (1/2) 2sin[Ax]Cos[Bx] sin[Ax]Cos[Bx] So, Int[Sin(3y)Cos(5y)dy] = (1/2)Int[Sin(8y)-Sin(2y)dy] = (-1/16) Cos[8y] +1/4 Cos[2y] + C You would get the same result if you used integration by parts twice and played around with trig identities.
Thanks to the pre-existing addition and subtraction theorums, we can establish the identity:sin(a+b) = sin(a)cos(b)+sin(a)cos(b)Then, solving this, we getsin(a+b) = 2(sin(a)cos(b))sin(a)cos(b) = sin(a+b)/2a=b, sosin(a)cos(a) = sin(a+a)/2sin(a)cos(a) = sin(2a)/2Therefore, the answer is sin(2a)/2.
We use the dot product cos and in vector we use the vector product sin because of the trigonometric triangle.