In real life unit vectors are used for directions, e.g east, north and up(zenith). The unit vector specifies the direction. Gyroscopes maintain a direction and keep things level. Whenever and where ever location is important, unit vectors are a part of real life. Whenever directions are important in your real life, then unit vectors are important. If everything was confined to move along a straight line, then unit vectors would not be important. If you can move in a plane, then unit vectors are important. Moving in space, unit vectors are more important. cars, ships and planes all move in space. Controlling and tracking these all involve unit vectors.
Any measurement in which the direction is relevant requires vectors.
In real life unit vectors are used for directions, e.g east, north and up. The unit vector specifies the direction. Gyroscopes maintain a direction and keep things level. Whenever and where ever location is important, unit vectors are a part of real life. Whenever directions are important in your real life, then unit vectors are important. If everything was confined to move along a straight line, then unit vectors would not be important. If you can move in a plane, then unit vectors are important. Moving in space, unit vectors are more important. cars, ships and planes all move in space. Controlling and tracking these all involve unit vectors.
flying planes, driving, measuring temperature, sailing
Vectors are used to denote or model directions.
They are used in airplanes and in sailboats.
Dropping a bullet and shooting a bullet at the same time. They will touch the ground at the same time because they are perpendicular vectors.
Real world uses for vectors would be plotting courses for boats and planning the construction of roads
Trigonometry is used in the fields of design, music, navigation, cartography, manufacturing, physics, optics, projectile motion, and any other field which involves angles, fields, waves, harmonics, and vectors.
Vectors are used to denote or model directions.
Vectors are one of the any variables used in the calculation of the speed of the ball.
In biotechnology, vectors can include plasmids, bacteriophages, and viral vectors. These vectors are used to transfer genetic material into host cells for various applications such as gene cloning, gene therapy, and protein production. Plasmids are commonly used in recombinant DNA technology, while viral vectors are often used in gene therapy.
how artificial chromosome are used as cloning vectors with example?
in maths
The law is used to add vectors to find the resultant of two or more vectors acting at a point.
Look at how it is done, then decide for yourself whether you consider this similar or not. Vectors are added by components - add the x-components and the y-components separately. The addition of the individual components is exactly the addition of real numbers (assuming the usual vectors used in physics - but more complicated types of "vectors" are also used in math). On the other hand, the magnitude of the sum of two vectors is usually less than the sum of the magnitudes of the vectors - unless they happen to point in exactly the same direction. For example, a vector 4 units in length plus a vector 3 units in length, at right angles, result in a vector 5 units of length, as is easy to deduce from Pythagoras's Law. However, once again, the components are added just like real numbers.
Coplanar vectors lie within the same plane, meaning they can be represented by arrows with their tails at the same point. Collinear vectors, on the other hand, lie along the same line, meaning they have the same or opposite directions. In essence, coplanar vectors can be parallel or intersecting within the same plane, while collinear vectors are always parallel or antiparallel along the same line.