A K-1 form, specifically IRS Schedule K-1, is typically issued by partnerships, S corporations, estates, and trusts to report income, deductions, and credits that are passed through to individual partners or shareholders. If you are a partner in a partnership or a shareholder in an S corporation, you should receive your K-1 from the entity itself, usually by mail or electronically. It's important to keep this form for your tax records, as it is needed to report your share of the entity's income on your personal tax return. If you haven't received it by tax season, you should contact the entity for a copy.
Factor them. k2 = k x k k2 - 1 = (k - 1)(k + 1) k2 - 2k + 1 = (k - 1)(k - 1) Combine the factors, eliminating duplicates. k2(k + 1)(k - 1)(k - 1) = k5 - k4 - k3 + k2, the LCM
If you're talking about (K-0)=1, then the answer is most definitely 1.
#include<stdio.h> #include<stdlib.h> #include<math.h> #include<conio.h> void main(void) { int K, P, C, J; double A[100][101]; int N; int Row[100]; double X[100]; double SUM, M; int T; do { printf("Please enter number of equations [Not more than %d]\n",100); scanf("%d", &N); } while( N > 100); printf("You say there are %d equations.\n", N); printf("From AX = B enter elements of [A,B] row by row:\n"); for (K = 1; K <= N; K++) { for (J = 1; J <= N+1; J++) { printf(" For row %d enter element %d please :\n", K, J); scanf("%lf", &A[K-1][J-1]); } } for (J = 1; J<= N; J++) Row[J-1] = J - 1; for (P = 1; P <= N - 1; P++) { for (K = P + 1; K <= N; K++) { if ( fabs(A[Row[K-1]][P-1]) > fabs(A[Row[P-1]][P-1]) ) { T = Row[P-1]; Row[P-1] = Row[K-1]; Row[K-1] = T; } } if (A[Row[P-1]][P-1] 0) { printf("The matrix is SINGULAR !\n"); printf("Cannot use algorithm --- exit\n"); exit(1); } X[N-1] = A[Row[N-1]][N] / A[Row[N-1]][N-1]; for (K = N - 1; K >= 1; K--) { SUM = 0; for (C = K + 1; C <= N; C++) { SUM += A[Row[K-1]][C-1] * X[C-1]; } X[K-1] = ( A[Row[K-1]][N] - SUM) / A[Row[K-1]][K-1]; } for( K = 1; K <= N; K++) printf("X[%d] = %lf\n", K, X[K-1]); getch(); }
K is two times m add 1 k = (2 m ) + 1 k=2m+1
To prove that (2^n - 1) gives the minimum number of moves required to solve the Tower of Hanoi problem for (n) disks, we can use mathematical induction. The base case, (n=1), requires 1 move, which matches (2^1 - 1 = 1). For the inductive step, assume that (2^k - 1) is the minimum for (k) disks. To solve for (k+1) disks, you move the top (k) disks (requiring (2^k - 1) moves), move the largest disk (1 move), and then move the (k) disks again (another (2^k - 1) moves), resulting in (2 \cdot (2^k - 1) + 1 = 2^{k+1} - 1), thus confirming the formula holds for (k+1) as well.
Assuming the elements are integer type... a[k] ^= a[k+1]; a[k+1] ^= a[k]; a[k] ^= a[k+1]; ...but if they are not integer type... temp = a[k]; a[k] = a[k+1]; a[k+1] = temp;
Factor them. k2 = k x k k2 - 1 = (k - 1)(k + 1) k2 - 2k + 1 = (k - 1)(k - 1) Combine the factors, eliminating duplicates. k2(k + 1)(k - 1)(k - 1) = k5 - k4 - k3 + k2, the LCM
It is 1, since k^1 = k.
-k = -1*k, so the coefficient is minus 1
k and -k right? -k x -1 =k k+k= 2 k= 1 unless you mean multiply then that would be -k x-1 =k k x k= 2 1.4142 rounded to the nearest ten thousandth
0
K=1
(k - 1)(k + 1)(k - 2)(k + 2)
n(n+1)/2 You can see this from the following: Let x=1+2+3+...+n This is the same as x=n+(n-1)+...+1 x=1+2+3+...+n x=n+(n-1)+...+1 If you add the corresponding terms on the right-hand side of the two equations together, they each equal n+1 (e.g., 1+n=n+1, 2+n-1=n+1, ..., n+1=n+1). There are n such terms. So adding the each of the left-hand sides and right-hand sides of the two equations, we get: x+x=(n+1)+(n+1)+...+(n+1) [with n (n+1) terms on the right-hand side 2x=n*(n+1) x=n*(n+1)/2 A more formal proof by induction is also possible: (1) The formula works for n=1 because 1=1*2/2. (2) Assume that it works for an integer k. (3) Now show that given the assumption that it works for k, it must also work for k+1. By assmuption, 1+2+3+...+k=k(k+1)/2. Adding k+1 to each side, we get: 1+2+3+...+k+(k=1)=k(k+1)/2+(k+1)=k(k+1)/2+2(k+1)/2=(k(k+1)+2(k+1))/2=((k+2)(k+1))/2=(((k+1)+1)(k+1))/2=((k+1)((k+1)+1)/2
Yes, they are exactly the same, both of them increment k in 1.
#include<iostream.h> #include<conio.h> void main() { clrscr(); int i,k,a[10],c[10],n,l; cout<<"Enter the no. of elements\t"; cin>>n; cout<<"\nEnter the sorted elments for optimal merge pattern"; for(i=0;i<n;i++) { cout<<"\t"; cin>>a[i]; } i=0;k=0; c[k]=a[i]+a[i+1]; i=2; while(i<n) { k++; if((c[k-1]+a[i])<=(a[i]+a[i+1])) { c[k]=c[k-1]+a[i]; } else { c[k]=a[i]+a[i+1]; i=i+2; while(i<n) { k++; if((c[k-1]+a[i])<=(c[k-2]+a[i])) { c[k]=c[k-1]+a[i]; } else { c[k]=c[k-2]+a[i]; }i++; } }i++; } k++; c[k]=c[k-1]+c[k-2]; cout<<"\n\nThe optimal sum are as follows......\n\n"; for(k=0;k<n-1;k++) { cout<<c[k]<<"\t"; } l=0; for(k=0;k<n-1;k++) { l=l+c[k]; } cout<<"\n\n The external path length is ......"<<l; getch(); }
Suppose N is a perfect number. Then N cannot be a square number and so N has an even number of factors.Suppose the factors are f(1) =1, f(2), f(3), ... , f(k-1), f(k)=N.Furthermore f(r) * f(k+1-r) = N for r = 1, 2, ... k so that f(r) = N/f(k+1-r)which implies that 1/f(r) = f(k+1-r)/NThen 1/f(1) + 1/(f(2) + ... + 1/f(k)= f(k)/N + f(k-1)/N + ... + f(1)/N= [f(k) + f(k-1) + ... + f(1)] / N= 2N/N since, by definition, [f(k) + f(k-1) + ... + f(1)] = 2N