Factor them. k2 = k x k k2 - 1 = (k - 1)(k + 1) k2 - 2k + 1 = (k - 1)(k - 1) Combine the factors, eliminating duplicates. k2(k + 1)(k - 1)(k - 1) = k5 - k4 - k3 + k2, the LCM
If you're talking about (K-0)=1, then the answer is most definitely 1.
#include<stdio.h> #include<stdlib.h> #include<math.h> #include<conio.h> void main(void) { int K, P, C, J; double A[100][101]; int N; int Row[100]; double X[100]; double SUM, M; int T; do { printf("Please enter number of equations [Not more than %d]\n",100); scanf("%d", &N); } while( N > 100); printf("You say there are %d equations.\n", N); printf("From AX = B enter elements of [A,B] row by row:\n"); for (K = 1; K <= N; K++) { for (J = 1; J <= N+1; J++) { printf(" For row %d enter element %d please :\n", K, J); scanf("%lf", &A[K-1][J-1]); } } for (J = 1; J<= N; J++) Row[J-1] = J - 1; for (P = 1; P <= N - 1; P++) { for (K = P + 1; K <= N; K++) { if ( fabs(A[Row[K-1]][P-1]) > fabs(A[Row[P-1]][P-1]) ) { T = Row[P-1]; Row[P-1] = Row[K-1]; Row[K-1] = T; } } if (A[Row[P-1]][P-1] 0) { printf("The matrix is SINGULAR !\n"); printf("Cannot use algorithm --- exit\n"); exit(1); } X[N-1] = A[Row[N-1]][N] / A[Row[N-1]][N-1]; for (K = N - 1; K >= 1; K--) { SUM = 0; for (C = K + 1; C <= N; C++) { SUM += A[Row[K-1]][C-1] * X[C-1]; } X[K-1] = ( A[Row[K-1]][N] - SUM) / A[Row[K-1]][K-1]; } for( K = 1; K <= N; K++) printf("X[%d] = %lf\n", K, X[K-1]); getch(); }
K is two times m add 1 k = (2 m ) + 1 k=2m+1
1 k equals 1 thousand, commonly used ingame.
Assuming the elements are integer type... a[k] ^= a[k+1]; a[k+1] ^= a[k]; a[k] ^= a[k+1]; ...but if they are not integer type... temp = a[k]; a[k] = a[k+1]; a[k+1] = temp;
Factor them. k2 = k x k k2 - 1 = (k - 1)(k + 1) k2 - 2k + 1 = (k - 1)(k - 1) Combine the factors, eliminating duplicates. k2(k + 1)(k - 1)(k - 1) = k5 - k4 - k3 + k2, the LCM
It is 1, since k^1 = k.
-k = -1*k, so the coefficient is minus 1
k and -k right? -k x -1 =k k+k= 2 k= 1 unless you mean multiply then that would be -k x-1 =k k x k= 2 1.4142 rounded to the nearest ten thousandth
0
K=1
The fraction 1/1 is equivalent to the whole number 1. It represents one part out of one equal part, which is the entire quantity. In other words, when you have one whole unit divided into one equal part, you have the fraction 1/1, which simplifies to 1.
(k - 1)(k + 1)(k - 2)(k + 2)
n(n+1)/2 You can see this from the following: Let x=1+2+3+...+n This is the same as x=n+(n-1)+...+1 x=1+2+3+...+n x=n+(n-1)+...+1 If you add the corresponding terms on the right-hand side of the two equations together, they each equal n+1 (e.g., 1+n=n+1, 2+n-1=n+1, ..., n+1=n+1). There are n such terms. So adding the each of the left-hand sides and right-hand sides of the two equations, we get: x+x=(n+1)+(n+1)+...+(n+1) [with n (n+1) terms on the right-hand side 2x=n*(n+1) x=n*(n+1)/2 A more formal proof by induction is also possible: (1) The formula works for n=1 because 1=1*2/2. (2) Assume that it works for an integer k. (3) Now show that given the assumption that it works for k, it must also work for k+1. By assmuption, 1+2+3+...+k=k(k+1)/2. Adding k+1 to each side, we get: 1+2+3+...+k+(k=1)=k(k+1)/2+(k+1)=k(k+1)/2+2(k+1)/2=(k(k+1)+2(k+1))/2=((k+2)(k+1))/2=(((k+1)+1)(k+1))/2=((k+1)((k+1)+1)/2
Yes, they are exactly the same, both of them increment k in 1.
#include<iostream.h> #include<conio.h> void main() { clrscr(); int i,k,a[10],c[10],n,l; cout<<"Enter the no. of elements\t"; cin>>n; cout<<"\nEnter the sorted elments for optimal merge pattern"; for(i=0;i<n;i++) { cout<<"\t"; cin>>a[i]; } i=0;k=0; c[k]=a[i]+a[i+1]; i=2; while(i<n) { k++; if((c[k-1]+a[i])<=(a[i]+a[i+1])) { c[k]=c[k-1]+a[i]; } else { c[k]=a[i]+a[i+1]; i=i+2; while(i<n) { k++; if((c[k-1]+a[i])<=(c[k-2]+a[i])) { c[k]=c[k-1]+a[i]; } else { c[k]=c[k-2]+a[i]; }i++; } }i++; } k++; c[k]=c[k-1]+c[k-2]; cout<<"\n\nThe optimal sum are as follows......\n\n"; for(k=0;k<n-1;k++) { cout<<c[k]<<"\t"; } l=0; for(k=0;k<n-1;k++) { l=l+c[k]; } cout<<"\n\n The external path length is ......"<<l; getch(); }