It can be growth or decay - it depends on whether n is positive (growth) or negative (decay).
Any number below negative one.
No, it would not.
No, the equation y = 102x is not exponential. An exponential function is of the form y = a * b^x, where a and b are constants. In this case, the equation y = 102x is a linear function, as it represents a straight line with a slope of 102 and no exponential growth or decay.
Exponential growth is when the amount of something is increasing, and exponential decay is when the amount of something is decreasing.
A = A0 e-Bt
That would be an exponential decay curve or negative growth curve.
The constant factor that each value in an exponential decay pattern is multiplied by the next value. The decay factor is the base in an exponential decay equation. for example, in the equation A= 64(0.5^n), where A is he area of a ballot and the n is the number of cuts, the decay factor is 0.5.
both have steep slopes both have exponents in their equation both can model population
It can be growth or decay - it depends on whether n is positive (growth) or negative (decay).
Any number below negative one.
No, it would not.
A typical formula for exponential decay is y(t) = c*exp(-r*t) , where r > 0. The domain is all reals, and the range is all positive reals, since a positive-base exponential always returns a positive value.
Exponential Decay. hope this will help :)
Exponential growth is when the amount of something is increasing, and exponential decay is when the amount of something is decreasing.
They are incredibly different acceleration patterns. Exponential growth is unbounded, whereas exponential decay is bounded so as to form a "dynamic equilibrium." This is why exponential decay is so typical of natural processes. To see work I have done in explaining exponential decay, go to the page included in the related links.
Exponential growth has a growth/decay factor (or percentage decimal) greater than 1. Decay has a decay factor less than 1.