To determine the equations that represent a line, you typically need either the slope-intercept form (y = mx + b), where m is the slope and b is the y-intercept, or the point-slope form (y - y₁ = m(x - x₁)), where (x₁, y₁) is a point on the line. Additionally, the standard form of a line (Ax + By = C) can also represent a line, where A, B, and C are constants. To identify specific equations, you would need additional information, such as points through which the line passes or its slope.
Line graphs may represent equations, if they are defined for all values of a variable.
A system of equations has infinitely many solutions when the equations represent the same line or plane. In a two-variable scenario, this occurs when both equations can be simplified to the same linear equation, meaning they are dependent. Graphically, this results in overlapping lines. For example, the equations (2x + 3y = 6) and (4x + 6y = 12) represent the same line and thus have infinitely many solutions.
Only one line can pass through two points, but this line can have different equations that could represent it. These are called dependent equations (because they represent the same line). * * * * * That is true for the Euclidean plane. But on surfaces that are not flat, there can be infinitely many lines through any pair of points.
Non-linear equations represent shapes other than straight lines.Non-linear equations represent shapes other than straight lines.Non-linear equations represent shapes other than straight lines.Non-linear equations represent shapes other than straight lines.
A system of equations can have three types of solutions: one unique solution, infinitely many solutions, or no solution at all. A unique solution occurs when the equations intersect at a single point, while infinitely many solutions arise when the equations represent the same line or plane. No solution occurs when the equations represent parallel lines or planes that do not intersect. The nature of the solutions depends on the relationships between the equations in the system.
Line graphs may represent equations, if they are defined for all values of a variable.
Because its linear and the equation is a problem to solve
Equations with the same solution are called dependent equations, which are equations that represent the same line; therefore every point on the line of a dependent equation represents a solution. Since there is an infinite number of points on a line, there is an infinite number of simultaneous solutions. For example, 2x + y = 8 4x + 2y = 16 These equations are dependent. Since they represent the same line, all points that satisfy either of the equations are solutions of the system. A system of linear equations is consistent if there is only one solution for the system. A system of linear equations is inconsistent if it does not have any solutions.
Bar graphs and line graphs do not. Straight line, parabolic, and hyperbolic graphs are graphs of an equation.
Infinite simultaneous solutions. (The two equations represent the same line) OR If your in nova net the answer should be ( Many )
A system of equations has infinitely many solutions when the equations represent the same line or plane. In a two-variable scenario, this occurs when both equations can be simplified to the same linear equation, meaning they are dependent. Graphically, this results in overlapping lines. For example, the equations (2x + 3y = 6) and (4x + 6y = 12) represent the same line and thus have infinitely many solutions.
Only one line can pass through two points, but this line can have different equations that could represent it. These are called dependent equations (because they represent the same line). * * * * * That is true for the Euclidean plane. But on surfaces that are not flat, there can be infinitely many lines through any pair of points.
A system of equations will have no solutions if the line they represent are parallel. Remember that the solution of a system of equations is physically represented by the intersection point of the two lines. If the lines don't intersect (parallel) then there can be no solution.
One of the most common ways to represent linear equations is to use constants. You can also represent linear equations by drawing a graph.
The two equations represent the same straight line.
"a" can represent (normally) acceleration.
Non-linear equations represent shapes other than straight lines.Non-linear equations represent shapes other than straight lines.Non-linear equations represent shapes other than straight lines.Non-linear equations represent shapes other than straight lines.