Yes, graphed linear inequalities should be shaded to represent the solution set. The shading indicates all the points that satisfy the inequality. For example, if the inequality is (y > mx + b), the area above the line is shaded. If the inequality includes "less than or equal to" or "greater than or equal to," the line is typically solid; otherwise, it is dashed.
The region of a coordinate plane described by a linear inequality consists of all the points that satisfy the inequality, which can be either above or below the boundary line defined by the corresponding linear equation. The boundary line itself is typically dashed if the inequality is strict (e.g., > or <) and solid if it is inclusive (e.g., ≥ or ≤). This region can be unbounded and may extend infinitely in one or more directions, depending on the specific inequality. The solution set includes all points (x, y) that make the inequality true.
To accurately determine which inequality is shown in the graph, I would need to see the graph itself. However, if the graph displays a shaded region above a line, it typically represents a "greater than" inequality (e.g., y > mx + b), while shading below the line indicates a "less than" inequality (e.g., y < mx + b). Additionally, if the line is solid, it indicates that the points on the line are included in the solution (≥ or ≤), whereas a dashed line indicates they are not (>, <).
If it is y is greater than then it is above the line. If it is x is greater than then it is to the right.
The graph of the solution set of a quadratic inequality typically represents a region in the coordinate plane, where the boundary is formed by the parabola defined by the corresponding quadratic equation. Depending on the inequality (e.g., (y < ax^2 + bx + c) or (y > ax^2 + bx + c)), the solution set will include points either above or below the parabola. The parabola itself may be included in the solution set if the inequality is non-strict (e.g., ( \leq ) or ( \geq )). The regions of the graph where the inequality holds true are shaded or highlighted to indicate the solution set.
Yes, graphed linear inequalities should be shaded to represent the solution set. The shading indicates all the points that satisfy the inequality. For example, if the inequality is (y > mx + b), the area above the line is shaded. If the inequality includes "less than or equal to" or "greater than or equal to," the line is typically solid; otherwise, it is dashed.
The shaded region above or below the line in the graph of a linear inequality is called the solution region. This region represents all the possible values that satisfy the inequality. Points within the shaded region are solutions to the inequality, while points outside the shaded region are not solutions.
The region of a coordinate plane described by a linear inequality consists of all the points that satisfy the inequality, which can be either above or below the boundary line defined by the corresponding linear equation. The boundary line itself is typically dashed if the inequality is strict (e.g., > or <) and solid if it is inclusive (e.g., ≥ or ≤). This region can be unbounded and may extend infinitely in one or more directions, depending on the specific inequality. The solution set includes all points (x, y) that make the inequality true.
If the signnn is less than then it is below the line , if it is more than than it is above the line, that is the shaded region, If the signnn is less than then it is below the line , if it is more than than it is above the line, that is the shaded region,
it is called a half plane :)
To accurately determine which inequality is shown in the graph, I would need to see the graph itself. However, if the graph displays a shaded region above a line, it typically represents a "greater than" inequality (e.g., y > mx + b), while shading below the line indicates a "less than" inequality (e.g., y < mx + b). Additionally, if the line is solid, it indicates that the points on the line are included in the solution (≥ or ≤), whereas a dashed line indicates they are not (>, <).
If it is y is greater than then it is above the line. If it is x is greater than then it is to the right.
-2
Actually, a linear inequality, such as y > 2x - 1, -3x + 2y < 9, or y > 2 is shaded, not a linear equation.The shaded region on the graph implies that any number in the shaded region is a solution to the inequality. For example when graphing y > 2, all values greater than 2 are solutions to the inequality; therefore, the area above the broken line at y>2 is shaded. Note that when graphing ">" or "=" or "
The inequality (6x + 2y - 10 > 0) can be rewritten in slope-intercept form as (y > -3x + 5). The boundary line is (y = -3x + 5), which has a slope of -3 and a y-intercept of 5. The region above this line represents the solution set for the inequality. Since the inequality is strict (>), the boundary line itself is not included in the solution.
The graph of the solution set of a quadratic inequality typically represents a region in the coordinate plane, where the boundary is formed by the parabola defined by the corresponding quadratic equation. Depending on the inequality (e.g., (y < ax^2 + bx + c) or (y > ax^2 + bx + c)), the solution set will include points either above or below the parabola. The parabola itself may be included in the solution set if the inequality is non-strict (e.g., ( \leq ) or ( \geq )). The regions of the graph where the inequality holds true are shaded or highlighted to indicate the solution set.
The part that is shaded represents all the possible solutions. An inequality has solutions that are either left or righ, above or below or between two parts of a graph.