Yes, graphed linear inequalities should be shaded to represent the solution set. The shading indicates all the points that satisfy the inequality. For example, if the inequality is (y > mx + b), the area above the line is shaded. If the inequality includes "less than or equal to" or "greater than or equal to," the line is typically solid; otherwise, it is dashed.
Graph both inequalities and the area shaded by both is the set of answers.
In a graph of a system of two linear inequalities, the doubly shaded region represents the set of all points that satisfy both inequalities simultaneously. Any point within this region will meet the criteria set by both linear inequalities, meaning its coordinates will fulfill the conditions of each inequality. Consequently, this region illustrates all possible solutions that satisfy the system, while points outside this region do not satisfy at least one of the inequalities.
Linear inequalities in two variables involve expressions that use inequality symbols (such as <, >, ≤, or ≥), while linear equations in two variables use an equality sign (=). The solution to a linear equation represents a specific line on a graph, while the solution to a linear inequality represents a region of the graph, typically shaded to show all the points satisfying the inequality. Moreover, linear inequalities allow for a range of values, whereas linear equations specify exact values for the variables.
To verify the solutions of a system of linear inequalities from a graph, check if the points satisfy all the inequalities in the system. You can do this by substituting the coordinates of each point into the original inequalities to see if they hold true. Additionally, ensure that the points lie within the shaded region of the graph, which represents the solution set. If both conditions are met, the solutions are confirmed to be true.
overlap
It represents the solution set.
Graph both inequalities and the area shaded by both is the set of answers.
overlap
true
The answer depends on which area is shaded for each inequality. I always teach pupils to shade the unwanted or non-feasible region. That way the solution is in the unshaded area. This is much easier to identify than do distinguish between a region which is shaded three times and another which is shaded four times.
the feasible region is where two or more inequalities are shaded in the same place
The answer depends onwhether or not the lines represent strict inequalities,what the shaded area represents.
A linear inequality is a mathematical statement that relates a linear expression to a value using inequality symbols such as <, >, ≤, or ≥. It represents a range of values for which the linear expression holds true, often depicted graphically as a shaded region on one side of a line in a coordinate plane. Unlike linear equations, which have exact solutions, linear inequalities define a set of possible solutions. For example, the inequality (2x + 3 < 7) indicates that any value of (x) that satisfies this condition is part of the solution set.
The shaded region above or below the line in the graph of a linear inequality is called the solution region. This region represents all the possible values that satisfy the inequality. Points within the shaded region are solutions to the inequality, while points outside the shaded region are not solutions.
To determine which points are solutions to a system of inequalities, you need to assess whether each point satisfies all the inequalities in the system. This involves substituting the coordinates of each point into the inequalities and checking if the results hold true. A point is considered a solution if it makes all the inequalities true simultaneously. Graphically, solutions can be found in the region where the shaded areas of the inequalities overlap.
Actually, a linear inequality, such as y > 2x - 1, -3x + 2y < 9, or y > 2 is shaded, not a linear equation.The shaded region on the graph implies that any number in the shaded region is a solution to the inequality. For example when graphing y > 2, all values greater than 2 are solutions to the inequality; therefore, the area above the broken line at y>2 is shaded. Note that when graphing ">" or "=" or "
To determine the graph that represents the solution set of a system of inequalities, you need to plot each inequality on a coordinate plane. The solution set will be the region where the shaded areas of all inequalities overlap. Typically, the boundaries of the inequalities will be represented by solid lines (for ≤ or ≥) or dashed lines (for < or >). Identifying the correct graph involves checking which regions satisfy all the inequalities simultaneously.