answersLogoWhite

0

To solve the equation (3x^2 - 4233 = 0), first, add 4233 to both sides to get (3x^2 = 4233). Then, divide by 3 to obtain (x^2 = 1411). Finally, take the square root of both sides to find (x = \pm \sqrt{1411}). Thus, the solutions are (x = \sqrt{1411}) and (x = -\sqrt{1411}).

User Avatar

AnswerBot

3w ago

What else can I help you with?

Continue Learning about Math & Arithmetic

What is a value or values that make an equation true?

A value or values that make an equation true are known as the solutions or roots of the equation. For example, in the equation (x + 3 = 7), the value (x = 4) is a solution because substituting it into the equation balances both sides. In general, solutions satisfy the equality expressed in the equation.


What are you finding when you solve a quadratic equation?

You are finding the roots or solutions. These are the values of the variable such that the quadratic equation is true. In graphical form, they are the values of the x-coordinates where the graph intersects the x-axis.


How do you identify 2 solutions to a linear equation?

A linear equation is that of a straight line. Any one of the infinitely many points on the line will be solutions. If the equation is in terms of the variables x and y, just pick any two values of x, solve for y and the results will be the coordinates of two solutions.


How do you use a graph to determine 3 solutions of an equation?

To determine three solutions of an equation using a graph, first plot the equation on a coordinate plane. Identify the points where the graph intersects the x-axis; these x-values represent the solutions of the equation. Each intersection point corresponds to a solution, so you can read the x-coordinates of these points to find the three solutions. Ensure that the graph is drawn accurately for precise identification of the solutions.


How many number of solutions are there for equation square of mod x minus 3times mod xplus 2 equal zero?

The equation is |x|2-3|x|+2=0 If x>0 then the equation becomes x2-3x+2=0 (x-2)(x-1)=0 x=1,2 We get two values for x. If x<0, then the equation is again x2-3x+2=0 We again get two values. Therefore, the total number of solutions=4.

Related Questions

What are 3 other names for solutions of a quadratic equation?

Roots, zeroes, and x values are 3 other names for solutions of a quadratic equation.


What is a value or values that make an equation true?

A value or values that make an equation true are known as the solutions or roots of the equation. For example, in the equation (x + 3 = 7), the value (x = 4) is a solution because substituting it into the equation balances both sides. In general, solutions satisfy the equality expressed in the equation.


What are you finding when you solve a quadratic equation?

You are finding the roots or solutions. These are the values of the variable such that the quadratic equation is true. In graphical form, they are the values of the x-coordinates where the graph intersects the x-axis.


How do you identify 2 solutions to a linear equation?

A linear equation is that of a straight line. Any one of the infinitely many points on the line will be solutions. If the equation is in terms of the variables x and y, just pick any two values of x, solve for y and the results will be the coordinates of two solutions.


How do you use a graph to determine 3 solutions of an equation?

To determine three solutions of an equation using a graph, first plot the equation on a coordinate plane. Identify the points where the graph intersects the x-axis; these x-values represent the solutions of the equation. Each intersection point corresponds to a solution, so you can read the x-coordinates of these points to find the three solutions. Ensure that the graph is drawn accurately for precise identification of the solutions.


How many number of solutions are there for equation square of mod x minus 3times mod xplus 2 equal zero?

The equation is |x|2-3|x|+2=0 If x>0 then the equation becomes x2-3x+2=0 (x-2)(x-1)=0 x=1,2 We get two values for x. If x<0, then the equation is again x2-3x+2=0 We again get two values. Therefore, the total number of solutions=4.


Which best explains why the equation 3x plus 8 3x - 5 has no solutions?

The equation (3x + 8 = 3x - 5) has no solutions because when we attempt to isolate (x), we end up with a contradiction. Subtracting (3x) from both sides results in (8 = -5), which is not true. Since there are no values of (x) that can satisfy this equation, it has no solutions.


When you square each side of an equation is the resulting equation equivalent to the original?

No. The resulting equation has more solutions. For example, x = 2 has only one solution and that is x = 2.butx2= 4, the squared equation, has two solutions: x = +2 and x = -2No. The resulting equation has more solutions. For example, x = 2 has only one solution and that is x = 2.butx2= 4, the squared equation, has two solutions: x = +2 and x = -2No. The resulting equation has more solutions. For example, x = 2 has only one solution and that is x = 2.butx2= 4, the squared equation, has two solutions: x = +2 and x = -2No. The resulting equation has more solutions. For example, x = 2 has only one solution and that is x = 2.butx2= 4, the squared equation, has two solutions: x = +2 and x = -2


Why is only the x value of the intersection point the solution to an equation in a quadratic function?

In a quadratic function, the intersection points with the x-axis represent the values of x where the function equals zero, which are the solutions to the equation. Since a quadratic is typically expressed in the form ( ax^2 + bx + c = 0 ), the y-value at these intersection points is always zero, indicating that the solutions are solely defined by the x-values. Therefore, only the x-values of these intersection points are relevant as they represent the roots of the equation.


How do you find 3 different ordered pairs that are solutions of the equation?

Select any three values of x in the domain of the equation. Solve the equation at these three points for the other variable, y. Then each (x, y) will be an ordered pair that is a solution of the equation.


What represents the solutions of a quadratic equation?

A quadratic equation is one that can be written as y=Ax^2+Bx+C. The solutions are the values of x that make y=0. If an equation has solutions, say x=M and x=N, then Ax^2+Bx+C=(x-M)(x-N). For example: y=x^2-5x+6 So we want to find what values of x make the equation true: 0=x^2-5x+6 This happens at x=2, when y=(2)^2-5*(2)+6 =4-10+6 =0 and at x=3, when y=(3)^2-5*(3)+6 =9-15+6 =0 So the solutions are x=2 and x=3, and the equation can be written as y=(x-2)(x-3).


These values are also called because they are the values at which the equation equals zero?

zeros values at which an equation equals zero are called roots,solutions, or simply zeros. an x-intercept occurs when y=o ex.) y=x squared - 4 0=(x-2)(x+2) (-infinity,-2)(-2,2) (2,infinity)