You are finding the roots or solutions. These are the values of the variable such that the quadratic equation is true. In graphical form, they are the values of the x-coordinates where the graph intersects the x-axis.
A linear equation is that of a straight line. Any one of the infinitely many points on the line will be solutions. If the equation is in terms of the variables x and y, just pick any two values of x, solve for y and the results will be the coordinates of two solutions.
The equation is |x|2-3|x|+2=0 If x>0 then the equation becomes x2-3x+2=0 (x-2)(x-1)=0 x=1,2 We get two values for x. If x<0, then the equation is again x2-3x+2=0 We again get two values. Therefore, the total number of solutions=4.
Select any three values of x in the domain of the equation. Solve the equation at these three points for the other variable, y. Then each (x, y) will be an ordered pair that is a solution of the equation.
A quadratic equation is one that can be written as y=Ax^2+Bx+C. The solutions are the values of x that make y=0. If an equation has solutions, say x=M and x=N, then Ax^2+Bx+C=(x-M)(x-N). For example: y=x^2-5x+6 So we want to find what values of x make the equation true: 0=x^2-5x+6 This happens at x=2, when y=(2)^2-5*(2)+6 =4-10+6 =0 and at x=3, when y=(3)^2-5*(3)+6 =9-15+6 =0 So the solutions are x=2 and x=3, and the equation can be written as y=(x-2)(x-3).
Roots, zeroes, and x values are 3 other names for solutions of a quadratic equation.
You are finding the roots or solutions. These are the values of the variable such that the quadratic equation is true. In graphical form, they are the values of the x-coordinates where the graph intersects the x-axis.
A linear equation is that of a straight line. Any one of the infinitely many points on the line will be solutions. If the equation is in terms of the variables x and y, just pick any two values of x, solve for y and the results will be the coordinates of two solutions.
The equation is |x|2-3|x|+2=0 If x>0 then the equation becomes x2-3x+2=0 (x-2)(x-1)=0 x=1,2 We get two values for x. If x<0, then the equation is again x2-3x+2=0 We again get two values. Therefore, the total number of solutions=4.
No. The resulting equation has more solutions. For example, x = 2 has only one solution and that is x = 2.butx2= 4, the squared equation, has two solutions: x = +2 and x = -2No. The resulting equation has more solutions. For example, x = 2 has only one solution and that is x = 2.butx2= 4, the squared equation, has two solutions: x = +2 and x = -2No. The resulting equation has more solutions. For example, x = 2 has only one solution and that is x = 2.butx2= 4, the squared equation, has two solutions: x = +2 and x = -2No. The resulting equation has more solutions. For example, x = 2 has only one solution and that is x = 2.butx2= 4, the squared equation, has two solutions: x = +2 and x = -2
Select any three values of x in the domain of the equation. Solve the equation at these three points for the other variable, y. Then each (x, y) will be an ordered pair that is a solution of the equation.
A quadratic equation is one that can be written as y=Ax^2+Bx+C. The solutions are the values of x that make y=0. If an equation has solutions, say x=M and x=N, then Ax^2+Bx+C=(x-M)(x-N). For example: y=x^2-5x+6 So we want to find what values of x make the equation true: 0=x^2-5x+6 This happens at x=2, when y=(2)^2-5*(2)+6 =4-10+6 =0 and at x=3, when y=(3)^2-5*(3)+6 =9-15+6 =0 So the solutions are x=2 and x=3, and the equation can be written as y=(x-2)(x-3).
zeros values at which an equation equals zero are called roots,solutions, or simply zeros. an x-intercept occurs when y=o ex.) y=x squared - 4 0=(x-2)(x+2) (-infinity,-2)(-2,2) (2,infinity)
10
An equation with infinitely many solutions typically occurs when it represents a relationship that can be satisfied by numerous values. For instance, the equation (y = 2x + 3) defines a straight line on a graph, meaning any point (x, y) that lies on that line is a solution. Similarly, equations like (0 = 0) or (x - x = 0) have infinite solutions because they are true for all values of the variables involved. In essence, these equations do not restrict the values that can satisfy them.
It has the following solutions.
Yes and yes. eg x = y + 1 has an infinite number of solutions, and {sin(x) + cos(x) = 2} does not have a solution.