answersLogoWhite

0

To determine which values satisfy a given inequality, you'll need to analyze the inequality itself. Start by isolating the variable on one side, if necessary. Then, test values within the solution interval or use a sign chart to identify the ranges that meet the inequality's condition. If you provide the specific inequality, I can help identify the exact values that satisfy it.

User Avatar

AnswerBot

1mo ago

What else can I help you with?

Continue Learning about Math & Arithmetic

Is all values of the variable that satisfy the inequality?

To determine if all values of a variable satisfy an inequality, you need to analyze the inequality itself. If it is always true (for instance, a statement like (x + 2 > x + 1) is always true), then all values of the variable satisfy it. However, if specific conditions or limits on the variable exist (like (x > 5)), then only those values that meet the conditions are valid solutions. Thus, the answer depends on the specific inequality in question.


What does solution of an inequality mean in math?

In mathematics, the solution of an inequality refers to the set of values that satisfy the inequality condition. For example, in the inequality (x > 3), any number greater than 3 is considered a solution. These solutions can often be represented on a number line or in interval notation, illustrating all possible values that fulfill the inequality. Essentially, it identifies the range of values for which the inequality holds true.


The values or set of values that makes an inequality or equation true are the?

The values or set of values that make an inequality or equation true are called solutions or roots. In the case of equations, these values satisfy the equation when substituted into it, while for inequalities, they make the inequality hold true. Finding these solutions is a fundamental aspect of algebra and helps in understanding the relationships between variables.


What are 3 possible solutions for the inequality?

To provide possible solutions for the inequality, I would need the specific inequality in question. However, generally speaking, solutions can include finding values that satisfy the inequality by isolating the variable, testing values within the identified intervals, or using graphing methods to visualize where the inequality holds true. If you have a specific inequality in mind, please share it for tailored solutions.


What are the largest values to an inequality?

The largest values in an inequality refer to the upper limits that satisfy the conditions of that inequality. For example, in the inequality (x < 5), the largest value that (x) can take is just below 5, such as 4.999. In cases of non-strict inequalities, like (x \leq 5), the largest value is exactly 5. Understanding these values is crucial for solving and graphing inequalities.

Related Questions

Is all values of the variable that satisfy the inequality?

To determine if all values of a variable satisfy an inequality, you need to analyze the inequality itself. If it is always true (for instance, a statement like (x + 2 > x + 1) is always true), then all values of the variable satisfy it. However, if specific conditions or limits on the variable exist (like (x > 5)), then only those values that meet the conditions are valid solutions. Thus, the answer depends on the specific inequality in question.


What does solution of an inequality mean in math?

In mathematics, the solution of an inequality refers to the set of values that satisfy the inequality condition. For example, in the inequality (x > 3), any number greater than 3 is considered a solution. These solutions can often be represented on a number line or in interval notation, illustrating all possible values that fulfill the inequality. Essentially, it identifies the range of values for which the inequality holds true.


The values or set of values that makes an inequality or equation true are the?

The values or set of values that make an inequality or equation true are called solutions or roots. In the case of equations, these values satisfy the equation when substituted into it, while for inequalities, they make the inequality hold true. Finding these solutions is a fundamental aspect of algebra and helps in understanding the relationships between variables.


What is the set of all numbers that make the inequality true?

The set of all numbers that make an inequality true is known as the solution set. It consists of all the values of the variable that satisfy the given inequality. This set can be expressed using interval notation or set builder notation, depending on the context of the problem. The solution set is crucial in determining the range of values that satisfy the given conditions.


What are the largest values to an inequality?

The largest values in an inequality refer to the upper limits that satisfy the conditions of that inequality. For example, in the inequality (x < 5), the largest value that (x) can take is just below 5, such as 4.999. In cases of non-strict inequalities, like (x \leq 5), the largest value is exactly 5. Understanding these values is crucial for solving and graphing inequalities.


How many different integer values of x satisfy this inequality 8x 2-xx?

To solve the inequality (8x^2 - x < 0), we first factor it as (x(8x - 1) < 0). The critical points are (x = 0) and (x = \frac{1}{8}). Analyzing the sign of the product in the intervals determined by these points, we find that the inequality holds for (0 < x < \frac{1}{8}). Since there are no integer values of (x) in this interval, the number of different integer values of (x) that satisfy the inequality is zero.


How do solutions differ for an equation and an inequality both algebraically and graphically?

Algebraically, solutions to an equation yield specific values that satisfy the equality, while solutions to an inequality provide a range of values that satisfy the condition (e.g., greater than or less than). Graphically, an equation is represented by a distinct curve or line where points satisfy the equality, whereas an inequality is represented by a shaded region that indicates all points satisfying the inequality, often including a boundary line that can be either solid (for ≤ or ≥) or dashed (for < or >). This distinction highlights the difference in the nature of solutions: precise for equations and broad for inequalities.


How do tell the solution of an inequality?

Substitute the values of the variables into the inequality. If the inequality is true then they are a solution, if not, they are not.Substitute the values of the variables into the inequality. If the inequality is true then they are a solution, if not, they are not.Substitute the values of the variables into the inequality. If the inequality is true then they are a solution, if not, they are not.Substitute the values of the variables into the inequality. If the inequality is true then they are a solution, if not, they are not.


What are Solution of an inequality?

The solution of an inequality is a set of values that satisfy the inequality condition. For example, in the inequality ( x > 3 ), the solution includes all numbers greater than 3, such as 4, 5, or any number approaching infinity. Solutions can be expressed as intervals, such as ( (3, \infty) ), or as a number line representation. These solutions help identify the range of values that make the inequality true.


How do you determine which constraints are binding?

The values of the variables will satisfy the equality (rather than the inequality) form of the constraint - provided you are not dealing with integer programming.


What are 3 solutions for inequality for y9?

Three solutions for inequality in Year 9 math include: Graphing: Plotting the inequality on a graph helps visualize the solution set, showing all the points that satisfy the inequality. Substitution: Testing specific values in the inequality can help determine if they satisfy the condition, providing a practical way to find solutions. Algebraic Manipulation: Rearranging the inequality by isolating the variable can simplify the problem and lead directly to the solution set.


In a nonlinear inequality which region represents the set of points that satisfy the inequality?

shaded