If the discriminant - the part under the radical sign in the quadratic formula - is negative, then the result is complex, it is as simple as that. You can't convert a complex number to a real number. If a particular problem requires only real-number solutions, then - if the formula gives complex numbers - you can state that there is no solution.
31
The absolute value of a complex number is the magnitude of the number, which is found from sqrt(a² + b²) for the complex number a + bi
No. A complex number is a number that has both a real part and an imaginary part. Technically, a pure imaginary number ... which has no real part ... is not a complex number.
A complex number has a real part and a (purely) imaginary part, So imaginary numbers are a subset of complex numbers. But the converse is not true. A real number is also a member of the complex domain but it is not an imaginary number.
If the discriminant - the part under the radical sign in the quadratic formula - is negative, then the result is complex, it is as simple as that. You can't convert a complex number to a real number. If a particular problem requires only real-number solutions, then - if the formula gives complex numbers - you can state that there is no solution.
A positive real number, such as 17, has two square roots. One is the one your calculator gives you, if you use the square root function. The other is the same number, with a minus sign in front. None of these has an imaginary part. There are no additional complex roots that have a non-zero imaginary part.
31
Adjoint operator of a complex number?
The absolute value of a complex number is the magnitude of the number, which is found from sqrt(a² + b²) for the complex number a + bi
Yes. And since Real numbers are a subset of complex numbers, a complex number can also be a pure real.Another AnswerYes, for example: (0 + j5) is a complex number, whose 'real' number is zero.
You get a complex number unless the real number happens to be 0 or 1.
Graphically, the conjugate of a complex number is its reflection on the real axis.
No. A complex number is a number that has both a real part and an imaginary part. Technically, a pure imaginary number ... which has no real part ... is not a complex number.
No. It is an imaginary (or complex) number.
One is a complex number and a real number.
A complex number has a real part and a (purely) imaginary part, So imaginary numbers are a subset of complex numbers. But the converse is not true. A real number is also a member of the complex domain but it is not an imaginary number.