answersLogoWhite

0

When multiplying powers with the same base, you add the exponents due to the properties of exponents that define multiplication. This is based on the idea that multiplying the same base repeatedly involves combining the total number of times the base is used. For example, (a^m \times a^n = a^{m+n}) because you are effectively multiplying (a) by itself (m) times and then (n) times, resulting in a total of (m+n) multiplications of (a). This rule simplifies calculations and maintains consistency in mathematical operations involving exponents.

User Avatar

AnswerBot

1w ago

What else can I help you with?

Continue Learning about Math & Arithmetic

When multiplying number do you add the exponents?

If you are multiplying powers of the same base (like 24 times 211), yes, you add the exponents.


How do you simplify exponents or powers in algebra?

When multiplying exponents with the same base add them: x^3*x^2 = x^5 When dividing exponents with the same base subtract them: x^3/x^2 = x^1 or x


What does it mean to multiply two powers having the same base and add the exponents?

This is one of the laws of exponents, which states that xa * xb = x(a+b) The base is x, and the two powers (or exponents) are a and b.


Why don't we change the exponents during like terms?

Exponents are higher in priority in terms of the order of operations, and do not combine in the same way as you would simple add/subtract/multiply/divide. So, if you have: 26 + 24 This is a polynomial in base 2 with different powers. It would be this in binary: 1010000 ...which would not be the same as 210: 1000000000 In order to be able to change exponents, you have to be multiplying factors using the same base, as in: 26 * 24 = 210 ...because the exponents are also indicating how many times you are multiplying each base by itself, and multiplication is the same as the basal function of the exponent (repeated multiplication).


Why do we add exponents when we multiply terms with the same base?

When multiplying terms with the same base, we add the exponents because of the fundamental property of exponents that states (a^m \times a^n = a^{m+n}). This property arises from the repeated multiplication of the base: for example, (a^m) represents multiplying the base (a) by itself (m) times, and (a^n) represents multiplying it (n) times. Therefore, when these two terms are multiplied, the total number of times the base (a) is multiplied is (m + n).

Related Questions

When multiplying number do you add the exponents?

If you are multiplying powers of the same base (like 24 times 211), yes, you add the exponents.


What is a rule that works for multiplying powers of the same base in exponents?

To multiply powers with the same base, you add the exponents. For example, 10^2 x 10^3 = 10^5. Similarly, to divide powers with the same base, you subtract the exponents. For example, 10^3 / 10^5 = 10^(-2).


When multiplying terms with the same base you do what to the exponents?

Sum the exponents.


How do you simplify exponents or powers in algebra?

When multiplying exponents with the same base add them: x^3*x^2 = x^5 When dividing exponents with the same base subtract them: x^3/x^2 = x^1 or x


What you do with the exponents when you you are multiplying?

If you are multiplying numbers with exponents, and the base is the same, you can just add exponents. For example, 104 x 105 = 109.


When multiplying variables with the same base what do you do with the exponents?

You add them.


What do you with two negative exponents when multiplying?

I presume you mean you are multiplying two powers of the same base, where both exponents are negative. Regardless of the signs of the exponents, you algebraically add the exponents. For example, 2-3 times 2-4 is 2-7; 35 times 3-8 is 3-3.


When do add exponents?

when you multiply powers with the same base.


When multiplying a number exponents that are squared do you add or multiply?

If the base numbers or variables are the same, you add the exponents.


What does it mean to multiply two powers having the same base and add the exponents?

This is one of the laws of exponents, which states that xa * xb = x(a+b) The base is x, and the two powers (or exponents) are a and b.


Why don't we change the exponents during like terms?

Exponents are higher in priority in terms of the order of operations, and do not combine in the same way as you would simple add/subtract/multiply/divide. So, if you have: 26 + 24 This is a polynomial in base 2 with different powers. It would be this in binary: 1010000 ...which would not be the same as 210: 1000000000 In order to be able to change exponents, you have to be multiplying factors using the same base, as in: 26 * 24 = 210 ...because the exponents are also indicating how many times you are multiplying each base by itself, and multiplication is the same as the basal function of the exponent (repeated multiplication).


Where can you use exponents?

exponents can be found in math formulas and wen multiplying the same number. exponents can be found in math formulas and wen multiplying the same number.