Binomials are used when the total of n independent trials take place and one wants to find the probability of r successes, when each success has a probability "p" of occurring. There should be independent trails, Probability of success stays the same for all trials, Fixed number of trials and Two different classifications in order to use binomial distribution.
To find the factor of 2 binomials
Depends on the kind of binomials. Case 1: If both binomials have different terms, then use the distribution property. Each term of one binomial will multiply both terms of the other binomial. After distribution, combine like terms, and it's done. Case 2: If both binomials have exactly the same terms, then work as in the 1st case, or use the formula for suaring a binomial, (a ± b)2 = a2 ± 2ab + b2. Case 3: If both binomials have terms that only differ in sign, then work as in the 1st case, or use the formula for the sum and the difference of the two terms, (a - b)(a + b) = a2 - b2.
By Trowing garbages
Depends on the kind of binomials. Case 1: If both binomials have different terms, then use the distribution property. Each term of one binomial will multiply both terms of the other binomial. After distribution, combine like terms, and it's done. Case 2: If both binomials have exactly the same terms, then work as in the 1st case, or use the formula for suaring a binomial, (a ± b)2 = a2 ± 2ab + b2. Case 3: If both binomials have terms that only differ in sign, then work as in the 1st case, or use the formula for the sum and the difference of the two terms, (a - b)(a + b) = a2 - b2.
Carolus Linnaeus
Explain how I would use algebra times to multiply two binomials (FOIL)?
To find the factor of 2 binomials
Depends on the kind of binomials. Case 1: If both binomials have different terms, then use the distribution property. Each term of one binomial will multiply both terms of the other binomial. After distribution, combine like terms, and it's done. Case 2: If both binomials have exactly the same terms, then work as in the 1st case, or use the formula for suaring a binomial, (a ± b)2 = a2 ± 2ab + b2. Case 3: If both binomials have terms that only differ in sign, then work as in the 1st case, or use the formula for the sum and the difference of the two terms, (a - b)(a + b) = a2 - b2.
By Trowing garbages
does the FOIL system work for any binomials
The advantage of recognizing some special binomials is that the math can then be done much more quickly. Some of the binomials appear very frequently.
You use the FOIL method. First terms Outer terms Inner terms Last terms.
Depends on the kind of binomials. Case 1: If both binomials have different terms, then use the distribution property. Each term of one binomial will multiply both terms of the other binomial. After distribution, combine like terms, and it's done. Case 2: If both binomials have exactly the same terms, then work as in the 1st case, or use the formula for suaring a binomial, (a ± b)2 = a2 ± 2ab + b2. Case 3: If both binomials have terms that only differ in sign, then work as in the 1st case, or use the formula for the sum and the difference of the two terms, (a - b)(a + b) = a2 - b2.
Carolus Linnaeus
Carolus Linnaeus
(x2 + x2)=
To multiply two binomials you use FOIL (first, outer, inner, last): (y-9)(y+10)=y*y+10y-9y-9*10=y2+y-90