In general, it does not, so the question is misinformed.
Chat with our AI personalities
f'[x] = lim(h->0) (f[x+h]-f[x])/h lim(h->0) (sin[x+h]-sin[x])/h By angle-addition formula, we have: lim(h->0) (sin[x]cos[h]+sin[h]cos[x]-sin[x])/h lim(h->0) (sin[x]cos[h]-sin[x])/h + lim(h->0) (sin[h]cos[x])/h sin[x]*lim(h->0) (cos[h]-1)/h + cos[x]*lim(h->0) sin[h]/h In a calculus class, it is shown that: lim(h->0) (cos[h]-1)/h = 0 and that lim(h->0) sin[h]/h is 1. So, sin[x]*lim(h->0) (cos[h]-1)/h + cos[x]*lim(h->0) sin[h]/h becomes sin[x]*0 + cos[x]*1 cos[x] So, if f[x] = sin[x], f'[x] = cos[x]
(sin(x)cot(x) - cos(x))/tan(x)(Multiply by tan(x)/tan(x))sin(x) - cos(x)tan(x)(tan(x) = sin(x)/cos(x))sinx - cos(x)(sin(x)/cos(x))(cos(x) cancels out)sin(x) - sin(x)0
sin(x) = x - x3/3! + x5/5! - x7/7! + ... and cos(x) = 1 - x2/2! + x4/4! - x6/6! + ... where x is the angle measured in radians. Then tan(x) = sin(x)/cos(x) where cos(x) is not 0 cosec(x) = 1/sin(x) where sin(x) is not 0 sec(x) = 1/cos(x) where cos(x) is not 0 and cot(x) = cos(x)/sin(x) where sin(x) is not 0
(tan x - sin x)/(tan x sin x) = (tan x sin x)/(tan x + sin x)[sin x/cos x) - sin x]/[(sin x/cos x)sin x] =? [(sin x/cos x)sin x]/[sin x/cos x) + sin x][(sin x - sin x cos x)/cos x]/(sin2 x/cos x) =? (sin2 x/cos x)/[(sin x + sin x cos x)/cos x)(sin x - sin x cos x)/sin2 x =? sin2 x/(sin x + sin x cos x)[sin x(1 - cos x)]/sin2 x =? sin2 x/[sin x(1 + cos x)(1 - cos x)/sin x =? sin x/(1 + cos x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[(1 + cos x)(1 - cos x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - cos2 x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - (1 - sin2 x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/sin2 x(1 - cos x)/sin x = (1 - cos x)/sin x True
(cos(pi x) + sin(pi y) )^8 = 44 differentiate both sides with respect to x 8 ( cos(pi x) + sin (pi y ) )^7 d/dx ( cos(pi x) + sin (pi y) = 0 8 ( cos(pi x) + sin (pi y ) )^7 (-sin (pi x) pi + cos (pi y) pi dy/dx ) = 0 8 ( cos(pi x) + sin (pi y ) )^7 (pi cos(pi y) dy/dx - pi sin (pi x) ) = 0 cos(pi y) dy/dx - pi sin(pi x) = 0 cos(pi y) dy/dx = sin(pi x) dy/dx = sin (pi x) / cos(pi y)