Anything that is normally distributed has certain properties. One is that the bulk of scores will be near the mean and the farther from the mean you are, the less common the score. Specifically, about 68% of anything that is normally distributed falls within one standard deviation of the mean.
That means that 68% of IQ scores fall between 85 and 115 (the mean being 100 and standard deviation being 15) AND 68% of adult male heights fall between 65 and 75 inches (the mean being 70 and I am estimating a standard deviation of 5).
Basically, even though the means and standard deviations change, something that is normally distributed will keep these probabilities (relative to the mean and standard deviation). By standardizing these numbers (changing the mean to 0 and the standard deviation to 1) we can use one table to find the probabilities for anything that is normally distributed.
No, the normal curve is not the meaning of the Normal distribution: it is one way of representing it.
I have included two links. A normal random variable is a random variable whose associated probability distribution is the normal probability distribution. By definition, a random variable has to have an associated distribution. The normal distribution (probability density function) is defined by a mathematical formula with a mean and standard deviation as parameters. The normal distribution is ofter called a bell-shaped curve, because of its symmetrical shape. It is not the only symmetrical distribution. The two links should provide more information beyond this simple definition.
what is density curve
It could be a Gaussian curve (Normal distribution) rotated through a right angle.It could be a Gaussian curve (Normal distribution) rotated through a right angle.It could be a Gaussian curve (Normal distribution) rotated through a right angle.It could be a Gaussian curve (Normal distribution) rotated through a right angle.
The area under a normal distribution is one since, by definition, the sum of any series of probabilities is one and, therefore, the integral (or area under the curve) of any probability distribution from negative infinity to infinity is one. However, if you take an interval of a normal distribution, its area can be anywhere between 0 and 1.
A bell shaped probability distribution curve is NOT necessarily a normal distribution.
A normalized probability distribution curve has an area under the curve of 1.Note: I said "normalized", not "normal". Do not confuse the terms.
The normal distribution, also known as the Gaussian distribution, has a familiar "bell curve" shape and approximates many different naturally occurring distributions over real numbers.
True * * * * * No. The Student's t-distribution, for example, is also bell shaped.
Yes. The total area under any probability distribution curve is always the probability of all possible outcomes - which is 1.
100%. And that is true for any probability distribution.
No, the normal curve is not the meaning of the Normal distribution: it is one way of representing it.
The Normal curve is a graph of the probability density function of the standard normal distribution and, as is the case with any continuous random variable (RV), the probability that the RV takes a value in a given range is given by the integral of the function between the two limits. In other words, it is the area under the curve between those two values.
I have included two links. A normal random variable is a random variable whose associated probability distribution is the normal probability distribution. By definition, a random variable has to have an associated distribution. The normal distribution (probability density function) is defined by a mathematical formula with a mean and standard deviation as parameters. The normal distribution is ofter called a bell-shaped curve, because of its symmetrical shape. It is not the only symmetrical distribution. The two links should provide more information beyond this simple definition.
False. A normalized distribution curve (do not confuse normalized with normal), by definition, has an area under the curve of exactly 1. That is because the probability of all possible events is also always exactly 1. The shape of the curve does not matter.
If the question is to do with a probability distribution curve, the answer is ONE - whatever the values of mu and sigma. The area under the curve of any probability distribution curve is 1.
what is density curve