There is a great series of videos on YouTube about quantum mechanics (which is one place where such concepts are used a lot). For the "why", the author says: "Because it works". In other words, it has been found that doing the calculations a certain way provides results that make sense, and that are consistent with observations.
Of course - as the same author points out - it took a genius to figure this out.
Chat with our AI personalities
No, in general they do not. They have the same eigenvalues but not the same eigenvectors.
Yes. Simple example: a=(1 i) (-i 1) The eigenvalues of the Hermitean matrix a are 0 and 2 and the corresponding eigenvectors are (i -1) and (i 1). A Hermitean matrix always has real eigenvalues, but it can have complex eigenvectors.
Eigenvalues and eigenvectors are properties of a mathematical matrix.See related Wikipedia link for more details on what they are and some examples of how to use them for analysis.
An eigenvector is a vector which, when transformed by a given matrix, is merely multiplied by a scalar constant; its direction isn't changed. An eigenvalue, in this context, is the factor by which the eigenvector is multiplied when transformed.
This is the definition of eigenvectors and eigenvalues according to Wikipedia:Specifically, a non-zero column vector v is a (right) eigenvector of a matrix A if (and only if) there exists a number λ such that Av = λv. The number λ is called the eigenvalue corresponding to that vector. The set of all eigenvectors of a matrix, each paired with its corresponding eigenvalue, is called the eigensystemof that matrix