x^(2) + 14x = -5
x^(2) + 14x + 5 = 0
This is now in quadratic form .
It does NOT factor so use the Quadratic Eq;n.
x = { -14 +/-sqrt[(14)^2 - 4(1)(5)]} / 2(1)
x = { -14 +/- sqrt[196 - 20]} / 2 049
x = { -14 +/- sqrt[176] } / 2
x = { -14 +/- 13.266499...} / 2
x = -27.266499... / 2 = 13.633249
&
x = -0.733500838.../2 = -0.366750419...
x2 - 14x + 45 = (x - 9)(x - 5)
x2 + 14x + 45 = 0 => x2 + 9x + 5x + 45 = 0 => x(x + 9) + 5(x + 9) = 0 (x + 9)(x + 5) = 0 so that x = -5 or x = -9
14x
14x - 14 = 2x + 46 14x - 2x = 46 + 14 12x = 60 x = 5
23 = 7x + 7x - 5 = 14x - 5 14x = 23 + 5 = 28 x = 28/14 = 2
x2 - 14x + 45 = (x - 9)(x - 5)
x2 - 14x + 45 = (x - 5)(x - 9).
x2 + 14x + 45 = 0 => x2 + 9x + 5x + 45 = 0 => x(x + 9) + 5(x + 9) = 0 (x + 9)(x + 5) = 0 so that x = -5 or x = -9
x2-14x+45=0(x-9)(x-5)=0x-9=0 & x-5=0x=9 & x=5
The roots are: x = -5 and x = -9
1
-x2-14x-45 = -(x2+14x+45) delta = 142-4*1*45=16 so x2+14x+45=(x-(-14+4)/2) (x-(-14-4)/2) = (x+5)(x+9) so -x2-14x-45 = -(x+5)(x+9)
14x
14x - 14 = 2x + 46 14x - 2x = 46 + 14 12x = 60 x = 5
Improved answer:5x2+14x+5 = 5-5x2+14x+5 = 0Solve by completing the square:(x+7)2+5 = 0(x+7)2+5-49 = 0(x+7)2 = 44x+7 = + or - the square root of 44x = -7 + or - the square root of 44
23 = 7x + 7x - 5 = 14x - 5 14x = 23 + 5 = 28 x = 28/14 = 2
x2 + 14x + 45 = (x + 9) (x + 5)