answersLogoWhite

0

If you want to show that A is a subset of B, you need to show that every element of A belongs to B. In other words, show that every object of A is also an object of B.

User Avatar

Wiki User

14y ago

Still curious? Ask our experts.

Chat with our AI personalities

EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi

Add your answer:

Earn +20 pts
Q: How can you show that a set is a subset of another?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Movies & Television

What is the name of the eight grouping symbols?

The eight (8) grouping symbols related to set theory include the following: ∈ "is an element (member) of" ∉ "is not an element (member) of" ⊂ "is a proper subset of" ⊆ "is a subset of" ⊄ "is not a subset of" ∅ the empty set; a set with no elements ∩ intersection ∪ union


Was the All in the Family set used in another TV show?

No. It does not appear the All in the Family set was reused by another TV show.


If A-B equals null set then prove A subset of B?

A - B is null.=> there are no elements in A - B.=> there are no elements such that they are in A but not in B.=> any element in A is in B.=> A is a subset of B.


Prove that A contains N elements and the different subsets of A is equal to 2?

Assuming the question is: Prove that a set A which contains n elements has 2n different subsets.Proof by induction on n:Base case (n = 0): If A contains no elements then the only subset of A is the empty set. So A has 1 = 20 different subsets.Induction step (n > 0): We assume the induction hypothesis for all n smaller than some arbitrary number k (k > 0) and show that if the claim holds for sets containing k - 1 elements, then the claim also holds for a set containing k elements.Given a set A which contains k elements, let A = A' u {.} (where u denotes set union, and {.} is some arbitrary subset of A containing a single element no in A'). Then A' has k - 1 elements and it follows by the induction hypothesis that (1) A' has 2k-1 different subsets (which also are subsets of A). (2) For each of these subsets we can create a new set which is a subset of A, but not of A', by adding . to it, that is we obtain an additional 2k-1 subsets of A. (*)So by assuming the induction hypothesis (for all n < k) we have shown that a set A containing kelements has 2k-1 + 2k-1 = 2k different subsets. QED.(*): We see that the sets are clearly subsets of A, but have we covered all subsets of A? Yes. Assume we haven't and there is some subset S of A not covered by this method: if S contains ., then S \ {.} is a subset of A' and has been included in step (2); otherwise if . is not in S, then S is a subset of A' and has been included in step (1). So assuming there is a subset of A which is not described by this process leads to a contradiction.


What is a subset from a larger population?

in statistics a sample is a subset of population..