answersLogoWhite

0

Let ABC be a triangle. Let D and E be the mid points of AB and AC respectively. Then the mid-line theorem states that DEBC and DE = BC/2.


Extend DE beyond E to F such that DE = EF. Since AE = CE, triangles ADE and CEF are equal, making CFAB (or CFBD, which is the same) because, for the transversal AC, the alternating angles DAE and ECF are equal. Also,CF = AD = BD, such that BDFC is a parallelogram. It follows that BC = DF = 2·DE which is what we set out to prove.Conversely, let D be on AB, E on AC, DEBC and DE = BC/2. Prove that AD = DB and AE = CE.This is because the condition DEBC makes triangles ADE and ABC similar, with implied proportion,AB/AD = AC/AE = BC/DE = 2.It thus follows that AB is twice as long as AD so that D is the midpoint of AB; similarly, E is the midpoint of AC.

User Avatar

Wiki User

9y ago

Still curious? Ask our experts.

Chat with our AI personalities

JudyJudy
Simplicity is my specialty.
Chat with Judy
SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran

Add your answer:

Earn +20 pts
Q: Prove the mid-line theorem
Write your answer...
Submit
Still have questions?
magnify glass
imp