answersLogoWhite

0

Yes.

The only group of order 1 is the trivial group containing only the identity element. All groups of orders 2 or 3 are cyclic since 2 and 3 are both prime numbers. Therefore, any group of order less than or equal to four must be a cyclic group.

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Movies & Television
Related Questions

Prove that a group of order 5 must be cyclic?

There's a theorem to the effect that every group of prime order is cyclic. Since 5 is prime, the assertion in the question follows from the said theorem.


A cyclic group of length 2 is called identity?

A cyclic group of order two looks like this.It has two elements e and x such that ex = xe = x and e2 = x2 = e.So it is clear how it relates to the identity.In a cyclic group of order 2, every element is its own inverse.


What is the order of the cyclic group mean?

The order of a cyclic group is the number of distinct elements in the group. It is also the smallest power, k, such that xk = i for all elements x in the group (i is the identity).


How do we prove that a finite group G of order p prime is cyclic using Lagrange?

Lagrange theorem states that the order of any subgroup of a group G must divide order of the group G. If order p of the group G is prime the only divisors are 1 and p, therefore the only subgroups of G are {e} and G itself. Take any a not equal e. Then the set of all integer powers of a is by definition a cyclic subgroup of G, but the only subgroup of G with more then 1 element is G itself, therefore G is cyclic. QED.


Let G be a cyclic group of order 8 then how many of the elements of G are generators of this group?

Four of them.


How do you determine number of isomorphic groups of order 10?

There are two: the cyclic group (C10) and the dihedral group (D10).


Prove that a group of order three is abelian?

By LaGrange's Thm., the order of an element of a group must divide the order of the group. Since 3 is prime, up to isomorphism, the only group of order three is {1,x,x^2} where x^3=1. Note that this is a finite cyclic group. Since all cyclic groups are abelian, because they can be modeled by addition mod an integer, the group of order 3 is abelian.


Show that an element of a group has order n if and only if it generates a cyclic group of order n?

An element ( g ) of a group ( G ) has order ( n ) if the smallest positive integer ( k ) such that ( g^k = e ) (the identity element) is ( n ). This means the powers of ( g ) generate the set ( { e, g, g^2, \ldots, g^{n-1} } ), which contains ( n ) distinct elements. Therefore, the cyclic group generated by ( g ), denoted ( \langle g \rangle ), has exactly ( n ) elements, thus it is a cyclic group of order ( n ). Conversely, if ( \langle g \rangle ) is a cyclic group of order ( n ), then ( g ) must also have order ( n ) since ( g^n = e ) is the first occurrence of the identity.


How many groups have only 5 elements in them?

In group theory, there is exactly one group of order 5, which is the cyclic group ( \mathbb{Z}/5\mathbb{Z} ). This is because 5 is a prime number, and any group of prime order is cyclic and isomorphic to the integers modulo that prime. Therefore, up to isomorphism, there is only one group with 5 elements.


How many elements in group will have the order equal to the order of group?

Number of generators of that group


What are the symbols of permutation groups?

some examples of symbols for permuation groups are: Sn Cn An These are the symmetric group, the cyclic group and the alternating group of order n. (Alternating group is order n!/2, n>2) One other is the Dihedral group Dn of order 2n.


What is the order of a group?

The order of a group is the same as its cardinality - i.e. the number of elements the set contains. The order of a particular element is the order of the (cyclic) group generated by that element - i.e. the order of the group {...a-4, a-3, a-2, a-1, e, a, a2, a3, a4...}. If these powers do not go on forever, it will have a finite order; otherwise the order will be infinite.