There's a theorem to the effect that every group of prime order is cyclic. Since 5 is prime, the assertion in the question follows from the said theorem.
By LaGrange's Thm., the order of an element of a group must divide the order of the group. Since 3 is prime, up to isomorphism, the only group of order three is {1,x,x^2} where x^3=1. Note that this is a finite cyclic group. Since all cyclic groups are abelian, because they can be modeled by addition mod an integer, the group of order 3 is abelian.
Yes. The only group of order 1 is the trivial group containing only the identity element. All groups of orders 2 or 3 are cyclic since 2 and 3 are both prime numbers. Therefore, any group of order less than or equal to four must be a cyclic group.
Prove that if it were true then there must be a contradiction.
A 15 yr. old must be able to prove that they can find a job, live on there own, find a living area, and prove that the will no longer need there parents. And you must go to court
You must be able to take care of yourself and your child on your own with no help from government contributions or other people. You must be able to prove this in front of a Judge.
By LaGrange's Thm., the order of an element of a group must divide the order of the group. Since 3 is prime, up to isomorphism, the only group of order three is {1,x,x^2} where x^3=1. Note that this is a finite cyclic group. Since all cyclic groups are abelian, because they can be modeled by addition mod an integer, the group of order 3 is abelian.
Lagrange theorem states that the order of any subgroup of a group G must divide order of the group G. If order p of the group G is prime the only divisors are 1 and p, therefore the only subgroups of G are {e} and G itself. Take any a not equal e. Then the set of all integer powers of a is by definition a cyclic subgroup of G, but the only subgroup of G with more then 1 element is G itself, therefore G is cyclic. QED.
Yes. The only group of order 1 is the trivial group containing only the identity element. All groups of orders 2 or 3 are cyclic since 2 and 3 are both prime numbers. Therefore, any group of order less than or equal to four must be a cyclic group.
No! Take the quaternion group Q_8.
An element ( g ) of a group ( G ) has order ( n ) if the smallest positive integer ( k ) such that ( g^k = e ) (the identity element) is ( n ). This means the powers of ( g ) generate the set ( { e, g, g^2, \ldots, g^{n-1} } ), which contains ( n ) distinct elements. Therefore, the cyclic group generated by ( g ), denoted ( \langle g \rangle ), has exactly ( n ) elements, thus it is a cyclic group of order ( n ). Conversely, if ( \langle g \rangle ) is a cyclic group of order ( n ), then ( g ) must also have order ( n ) since ( g^n = e ) is the first occurrence of the identity.
He must prove loyalty and mainly prove himself in battle
If ( G ) is an abelian group of order ( PS ), where ( P ) and ( S ) are distinct primes, then by the Fundamental Theorem of Finite Abelian Groups, ( G ) can be expressed as a direct product of cyclic groups of prime power order. The possible structures for ( G ) are ( \mathbb{Z}/PS\mathbb{Z} ) or ( \mathbb{Z}/P^k\mathbb{Z} \times \mathbb{Z}/S^m\mathbb{Z} ) with ( k ) and ( m ) both ( 1 ). However, since ( P ) and ( S ) are distinct primes, the only way for ( G ) to maintain order ( PS ) while being abelian is for it to be isomorphic to ( \mathbb{Z}/PS\mathbb{Z} ), which is cyclic. Thus, ( G ) must be cyclic.
be testable
The prosecution must prove beyond a reasonable doubt that the defendant committed the crime they are accused of in order to secure a guilty verdict.
The order of an element in a multiplicative group is the power to which it must be raised to get the identity element.
No. There are two molecular requirements that must be met to indicate aromaticity. In order to be aromatic a molecule must: 1) have a ring of pi electrons above and below the molecule. This means: a. The molecule must be cyclic. b. All atoms in the ring must be sp2 hybridized c. The molecule must be planar. 2) have an odd number of pairs of pi electrons. Since acetic acid is not cyclic, it cannot meet the first requirement and therefore cannot be aromatic. There are, however, delocalized electrons that increase the stability of the compound.
To prove that a group ( G ) has no subgroup of order 6, we can use the Sylow theorems. First, we note that if ( |G| ) is not divisible by 6, then ( G ) cannot have a subgroup of that order. If ( |G| ) is divisible by 6, we analyze the number of Sylow subgroups: the number of Sylow 2-subgroups ( n_2 ) must divide ( |G|/2 ) and be congruent to 1 modulo 2, while the number of Sylow 3-subgroups ( n_3 ) must divide ( |G|/3 ) and be congruent to 1 modulo 3. If both conditions cannot be satisfied simultaneously, it implies that no subgroup of order 6 exists.