answersLogoWhite

0

Vf = Vi + at

Where Vf = final velocity

Vi = initial velocity

a = acceleration

t = time

User Avatar

Wiki User

10y ago

What else can I help you with?

Continue Learning about Natural Sciences

If an object is accelerating what equation relates the distance traveled by that object to the initial velocity final velocity and time?

The equation that relates the distance traveled by a constantly accelerating object to its initial velocity, final velocity, and time is the equation of motion: [ \text{distance} = \frac{1}{2} \times (\text{initial velocity} + \text{final velocity}) \times \text{time} ] This equation assumes constant acceleration.


How do you find displacement when you only have acceleration initial velocity and final velocity?

You can use the equation: Displacement = (final velocity squared - initial velocity squared) / (2 * acceleration). Plug in the values of final velocity, initial velocity, and acceleration to calculate the displacement.


How do you find the initial velocity just with the accelaration final velocity and time?

To find acceleration, you take Vi [Initial Velocity] and you subtract if from Vf [Final Velocity.] (Vi - Vf) If they Vi and Vf are already given, you take the two givens and you subtract them from each other. Vi minus Vf. Do not do Vf minus Vi or it will be wrong. After you do that, you divide your answer from T [Time] (Vi - Vf) a= _____ t Once you get your answer, that will be your acceleration.


Is acceleration equal to the initial velocity minus the final velocity and then divided by time?

No, acceleration is calculated as the change in velocity divided by time. It is the rate at which the velocity of an object changes. Mathematically, acceleration is represented as (final velocity - initial velocity) / time.


Which is greater in positive acceleration initial or final velocity?

In positive acceleration, the final velocity is greater than the initial velocity. This is because acceleration is the rate of change of velocity, so as time progresses, the velocity increases due to the acceleration.

Related Questions

If an object is accelerating what equation relates the distance traveled by that object to the initial velocity final velocity and time?

The equation that relates the distance traveled by a constantly accelerating object to its initial velocity, final velocity, and time is the equation of motion: [ \text{distance} = \frac{1}{2} \times (\text{initial velocity} + \text{final velocity}) \times \text{time} ] This equation assumes constant acceleration.


What does initial velocity squared plus 2 times acceleration times distance equal?

This equation represents the final velocity squared when an object is accelerating from an initial velocity over a certain distance. It is derived from the kinematic equation (v^2 = u^2 + 2as), where (v) is the final velocity, (u) is the initial velocity, (a) is the acceleration, and (s) is the distance traveled.


What is the equation for acceleration?

Final Velocity- Initial Velocity Time


What equation do you use for acceleration?

The equation for acceleration is given by the formula: acceleration = (final velocity - initial velocity) / time. This equation calculates the rate at which an object's velocity changes over time.


What equation do you use to calculate acceleration?

Acceleration is calculated using the equation a = (v_f - v_i) / t, where a is the acceleration, v_f is the final velocity, v_i is the initial velocity, and t is the time taken to change from the initial velocity to the final velocity.


A car accelerates from to at a rate of How far does it travel while accelerating?

To calculate how far the car travels while accelerating, you would need to use the kinematic equation: distance = (initial velocity × time) + (0.5 × acceleration × time^2). Plug in the values of the initial velocity, final velocity, and acceleration into the formula to find the distance traveled.


How do you find displacement when you only have acceleration initial velocity and final velocity?

You can use the equation: Displacement = (final velocity squared - initial velocity squared) / (2 * acceleration). Plug in the values of final velocity, initial velocity, and acceleration to calculate the displacement.


Equation for calculating velocity when acceleration and time are known?

The equation for calculating velocity when acceleration and time are known is v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time.


What is the equation for change in acceleration?

accelaration is defined as the rate of change of velocity. Therefore the formula for acceleration is a =(Final Velocity - Initial Velocity) divide by the (change in time)


The equation used to find acceleration is what?

The equation to find acceleration is acceleration = change in velocity / time taken. This equation shows how much an object's velocity changes over a certain period of time, resulting in the acceleration of the object.


How to find the initial velocity of an object in motion?

To find the initial velocity of an object in motion, you can use the equation: initial velocity final velocity - (acceleration x time). This equation helps you calculate the starting speed of the object based on its final velocity, acceleration, and the time it took to reach that final velocity.


How do you find the initial velocity just with the accelaration final velocity and time?

To find acceleration, you take Vi [Initial Velocity] and you subtract if from Vf [Final Velocity.] (Vi - Vf) If they Vi and Vf are already given, you take the two givens and you subtract them from each other. Vi minus Vf. Do not do Vf minus Vi or it will be wrong. After you do that, you divide your answer from T [Time] (Vi - Vf) a= _____ t Once you get your answer, that will be your acceleration.