If the velocity is uniform, then the final velocity and the initial velocity are the same. Perhaps you meant to say uniform acceleration. In any event, the question needs to be stated more precisely.
Here are the velocity equations D= (vi+vf/2)t D=vit + 1/2 at^2 V^2=Vi^2 + 2ad V= vi+at a= (vf-vo)/t According to your question, use V^2=Vi^2 + 2ad v= Final velocity vi= initial velocity a= acceleration d= displacement
difference circle
You can find the time of flight by using the formula: time of flight = (2 * initial velocity * sin(angle)) / gravitational acceleration. Input the initial velocity and angle at which the object is thrown into the formula to calculate the time it takes for the object to reach the same height as it was initially launched.
To calculate the initial velocity given only the initial position and the scale of the axes, you would need additional information such as the time of flight or the maximum height reached by the object. Without this additional data, it is not possible to determine the initial velocity.
If the velocity is uniform, then the final velocity and the initial velocity are the same. Perhaps you meant to say uniform acceleration. In any event, the question needs to be stated more precisely.
apply conservation of momentum theory- m1v1=m2v2 where m1 is the initial mass, m2 is the final mass, v1 is the initial velocity and v2 is the final velocity.
Deceleration is the rate of decrease of velocity with respect to time. It is the negative of acceleration. The formula for deceleration is the same as that of acceleration, only that the acceleration is represented as negative. The formula is: - (deceleration) = (final velocity) - (initial velocity) time Therefore, (deceleration) = (initial velocity) - (final velocity) time
If you throw an object up, and assume that air resistance is negligible, knowing the initial velocity is enough. One way to do this is to use conservation of energy. Calculate the energy from the initial velocity, then insert it in the formula for gravitational potential energy.Same for final velocity - the final speed is the same as the initial speed. If you know the work done, you already have the first half of the above steps solved.
You use the information you're given, along with the equations and formulas you know that relate distance, time, speed, and acceleration, to calculate the number you're asked to find. And here's a tip: Chances are that the initial acceleration, the final acceleration, and the acceleration all along the way, are all the same number.
Distance alone is not enough to tell you velocity final. (If it could, then all of the thousands of runners who finish in the same marathon would all cross the finish line at the same speed.) Besides distance, you would also need velocity initial, and either acceleration or time.
The final velocities of the gliders after a perfectly elastic collision will also be equal and opposite to their initial velocities. This is due to the conservation of momentum and kinetic energy in elastic collisions.
Deceleration rate can be calculated by dividing the initial velocity minus the final velocity by the time taken for the change in velocity to occur. The formula is: Deceleration = (Initial velocity - Final velocity) / Time. Alternatively, you can also calculate deceleration by dividing the negative change in velocity by the time taken for that change.
In projectile motion, since , there's no force in the horizontal direction which can change the horizontal motion therefore the horizotal velocity remains conserved Vx=Vox= Vocos theta by using above formula , constant horizontal initial or final velocity can be found. since Initial = final horizontal velocity.
No, although they are accelerating (a) at the same speed their inital velocity (u) is undefined, therefore they may be getting faster at the same acelleration altough they may be at a different velocity to start with. a = (u-v)/t (t = time, v= final velocity)
Initial velocity = m/s, Final velocity =m/s Distance traveled x = mIn this example, the items labeled on the diagram are considered primary: if one of them is changed, the others remain the same. The data in the boxes may be changed, and the calculation will be done when you click outside the box, subject to the constraints described. If the average velocity is directly changed, the final velocity is adjusted for consistency. If the acceleration or time is changed, then the distance is allowed to change.Distance x = m Initial velocity v0 = m/s Final velocity v = m/s Average velocity = m/s Acceleration a = m/s^2 Time t = s
The first answer is backward. Acceleration = (final velocity - initial velocity)/total time. For deceleration the formula is the same, the answer will just be negative.Agreed. In physics, there is no "deceleration", only negative acceleration.a = Δv / ΔtThere is no equation for "deceleration" as suggested below.Deceleration=(original velocity-final velocity)/TimeDeceleration In MotionDeceleration = inital speed - final speed / total time taken