Please help me I am the above person :(
If the velocity is uniform, then the final velocity and the initial velocity are the same. Perhaps you meant to say uniform acceleration. In any event, the question needs to be stated more precisely.
Here are the velocity equations D= (vi+vf/2)t D=vit + 1/2 at^2 V^2=Vi^2 + 2ad V= vi+at a= (vf-vo)/t According to your question, use V^2=Vi^2 + 2ad v= Final velocity vi= initial velocity a= acceleration d= displacement
difference circle
If you're willing to ignore the effect of air resistance, then the answer is as follows: The object's horizontal velocity remains constant (at least until it eventually hits the ground). The vertical component of the object's initial velocity ... call it V(i) ... is the (total initial velocity) multipled by the (sine of the initial angle above the horizontal). Beginning at the time of the toss, the magnitude of the vertical component of velocity is V = V(i) - 1/2gT2. T = number of seconds after the toss g = acceleration of gravity = approx 32 ft/sec2 or 9.8 m/sec2
We suspect that you're also given a line on the graph. If so, then the initial speed is the slope of the line at the initial position. To get the real slope of the line, you need to know the scales of the axes. If the scales aren't the same, then the real slope of the line isn't what it looks like, and has to be calculated by measuring its progress along both axes just after the initial position.
If the velocity is uniform, then the final velocity and the initial velocity are the same. Perhaps you meant to say uniform acceleration. In any event, the question needs to be stated more precisely.
apply conservation of momentum theory- m1v1=m2v2 where m1 is the initial mass, m2 is the final mass, v1 is the initial velocity and v2 is the final velocity.
Deceleration is the rate of decrease of velocity with respect to time. It is the negative of acceleration. The formula for deceleration is the same as that of acceleration, only that the acceleration is represented as negative. The formula is: - (deceleration) = (final velocity) - (initial velocity) time Therefore, (deceleration) = (initial velocity) - (final velocity) time
If you throw an object up, and assume that air resistance is negligible, knowing the initial velocity is enough. One way to do this is to use conservation of energy. Calculate the energy from the initial velocity, then insert it in the formula for gravitational potential energy.Same for final velocity - the final speed is the same as the initial speed. If you know the work done, you already have the first half of the above steps solved.
You use the information you're given, along with the equations and formulas you know that relate distance, time, speed, and acceleration, to calculate the number you're asked to find. And here's a tip: Chances are that the initial acceleration, the final acceleration, and the acceleration all along the way, are all the same number.
Distance alone is not enough to tell you velocity final. (If it could, then all of the thousands of runners who finish in the same marathon would all cross the finish line at the same speed.) Besides distance, you would also need velocity initial, and either acceleration or time.
The final velocities of the gliders after a perfectly elastic collision will also be equal and opposite to their initial velocities. This is due to the conservation of momentum and kinetic energy in elastic collisions.
Deceleration rate can be calculated by dividing the initial velocity minus the final velocity by the time taken for the change in velocity to occur. The formula is: Deceleration = (Initial velocity - Final velocity) / Time. Alternatively, you can also calculate deceleration by dividing the negative change in velocity by the time taken for that change.
In projectile motion, since , there's no force in the horizontal direction which can change the horizontal motion therefore the horizotal velocity remains conserved Vx=Vox= Vocos theta by using above formula , constant horizontal initial or final velocity can be found. since Initial = final horizontal velocity.
No, although they are accelerating (a) at the same speed their inital velocity (u) is undefined, therefore they may be getting faster at the same acelleration altough they may be at a different velocity to start with. a = (u-v)/t (t = time, v= final velocity)
Initial velocity = m/s, Final velocity =m/s Distance traveled x = mIn this example, the items labeled on the diagram are considered primary: if one of them is changed, the others remain the same. The data in the boxes may be changed, and the calculation will be done when you click outside the box, subject to the constraints described. If the average velocity is directly changed, the final velocity is adjusted for consistency. If the acceleration or time is changed, then the distance is allowed to change.Distance x = m Initial velocity v0 = m/s Final velocity v = m/s Average velocity = m/s Acceleration a = m/s^2 Time t = s
No. V=v0 +at is the formula for velocity, the acceleration 'a' can be the same but the initial velocity v0 may be different. If v0 is the same for the two automobiles , the velocity would be the same.