Since jerk is defined as the derivative (the rate of change) of acceleration, in the case of the area under the curve, it is the other way round: the integral (area under the curve) for jerk is the acceleration.
The momentum-time graph is the integral of the force-time graph. that is, it is the area under the curve of the f-t graph.The momentum-time graph is the integral of the force-time graph. that is, it is the area under the curve of the f-t graph.The momentum-time graph is the integral of the force-time graph. that is, it is the area under the curve of the f-t graph.The momentum-time graph is the integral of the force-time graph. that is, it is the area under the curve of the f-t graph.
The area under a position-time graph represents the displacement of an object. It is calculated by finding the area between the curve of the graph and the time axis. The units of the area will be in distance units (e.g., meters, kilometers).
The area under the speed/time graph between two points in time is the distance covered during that time.
Distance travelled from a velocity / time graph can be calculated from area under graph, say area under (v/t) graph from 0 - 1 seconds = distance travelled after 1 second, then do 0 - 2 seconds, 0 - 3 etc for set of data for distance / time graph
In a speed - time graph, the area under the line equals the distance traveled during the time interval A of ____ = L X W A of triangle = 1/2 bh
The momentum-time graph is the integral of the force-time graph. that is, it is the area under the curve of the f-t graph.The momentum-time graph is the integral of the force-time graph. that is, it is the area under the curve of the f-t graph.The momentum-time graph is the integral of the force-time graph. that is, it is the area under the curve of the f-t graph.The momentum-time graph is the integral of the force-time graph. that is, it is the area under the curve of the f-t graph.
The area under an acceleration-time graph is equal to the object's velocity (not change in velocity).
The area under a position-time graph represents the displacement of an object. It is calculated by finding the area between the curve of the graph and the time axis. The units of the area will be in distance units (e.g., meters, kilometers).
The area under the velocity time graph of an object is equal to the distance travelled by that object in that time. This is because displacement is the integral of velocity with respect to time so integrating velocity from time A to time B will give the displacement from time A to time B. ( Integrating is the same as calculating the area under the graph)
The area under the speed/time graph between two points in time is the distance covered during that time.
The displacement of an object from a velocity-time graph can be determined by finding the area under the velocity-time graph. For example, the displacement over a certain time interval can be calculated by finding the area of the corresponding region under the velocity-time graph. This can be done by calculating the area of the trapezoid or rectangle formed by the graph.
The distance travelled over the time period represented by the area under the v-t graph between the end points.
Displacement is the area under the v-t graph.
Distance travelled from a velocity / time graph can be calculated from area under graph, say area under (v/t) graph from 0 - 1 seconds = distance travelled after 1 second, then do 0 - 2 seconds, 0 - 3 etc for set of data for distance / time graph
In a speed - time graph, the area under the line equals the distance traveled during the time interval A of ____ = L X W A of triangle = 1/2 bh
Area under velocity versus time graph(between two given instances of time i.e. two points on time axis) gives the displacement of the body( whose graph was plotted) between those two instances i.e. in that time interval. Area under velocity time graph can be found from definite integration if the graph is a curve. Note: Area under velocity versus time graph gives displacement not distance covered by body. Note: Area enclosed between the plotted curve and time axis is taken. For convenience time should be taken in the x-axis.
To determine velocity from an acceleration-time graph, you can find the area under the curve of the graph. This area represents the change in velocity over time. By calculating this area, you can determine the velocity at any given point on the graph.