The area under the speed/time graph between two points in time
is the distance covered during that time.
To find instantaneous velocity from a position-time graph, you calculate the slope of the tangent line at a specific point on the graph. The slope represents the rate of change of position at that instant, which is equivalent to the velocity at that particular moment.
No, average velocity is the total displacement divided by the total time taken. The slope of the tangent to the curve on a velocity-time graph at a specific instant of time gives the instantaneous velocity at that moment, not the average velocity.
The slope of a line on a velocity-time graph is acceleration.
A velocity-time graph shows how an object's velocity changes over time. The slope of the graph represents the object's acceleration, and the area under the curve represents the total displacement of the object. It is a useful tool for understanding an object's motion.
well, the area under the curve between a time interval is equal to the distance traveled on that specific time interval. So one quantity is distance. As for another quantity, the answer would be velocity, but I think they may want a less obvious answer. A quantity out side of velocity could be instantaneous acceleration. This is given by the slope of the the tangent line to the velocity-time graph. Hope this helps you answer your question. Though I think the most simple way to understanding why is to take a course of calculus.
The graph of velocity-time is the acceleration.
To find instantaneous velocity from a position-time graph, you calculate the slope of the tangent line at a specific point on the graph. The slope represents the rate of change of position at that instant, which is equivalent to the velocity at that particular moment.
To determine velocity from an acceleration-time graph, you can find the area under the curve of the graph. This area represents the change in velocity over time. By calculating this area, you can determine the velocity at any given point on the graph.
The rate of Change in acceleration.
velocity.
No, average velocity is the total displacement divided by the total time taken. The slope of the tangent to the curve on a velocity-time graph at a specific instant of time gives the instantaneous velocity at that moment, not the average velocity.
The slope of that graph at each point is the speed at that instant of time.
The rate of change in accelleration.
The slope of the speed/time graph is the magnitude of acceleration. (It's very difficult to draw a graph of velocity, unless the direction is constant.)
It could be a velocity graph or an acceleration graph. If the plot is a straight line it is constant velocity. If the plot is a curve it is acceleration.
To find the position of an object from a velocity-time graph, you need to calculate the area under the curve of the graph. This area represents the displacement of the object.
To find the position from a velocity-vs-time graph, you need to calculate the area under the velocity curve. If the velocity is constant, the position can be found by multiplying the velocity by the time. If the velocity is changing, you need to calculate the area under the curve using calculus to determine the position.