19
9
the answer is 95
Total of 720 combinations:1 --- 12 --- 23 --- 64 --- 245 --- 1206 --- 7207 --- 5040.......Notice that:A --- BC --- DE --- FG --- XIn this sequence, if you wanted to know "X", it would be equal to FxG, and that is the key to this sequence. Why does it happen?Well, if, lets see, for instance, if 2 digits (0 and 1) have a possible of two combinations (10 and 01), then 3 digits (0, 1 and 2) will have a possible of six combinations: 012021And equivelent, but switching 0 with either 1 or 2, making it repeat itself 3 times.Eventually, we will end up doing 2 (number of combinations with 2 digits) times 3 (number of digits of which we want to know the number of unique combinations possible), totallizing 6 (our wanted-to-know number)
If each number can be used only once then there are just four: 2345, 2346, 2456 and 3456. There are no others because the order of the digits does not matter in combinations.
There are different numbers of combinations for groups of different sizes out of 9: 1 combination of 9 digits 9 combinations of 1 digit and of 8 digits 36 combinations of 2 digits and of 7 digits 84 combinations of 3 digits and of 6 digits 126 combinations of 4 digits and of 5 digits 255 combinations in all.
Assuming the digits cannot be repeated, there are 7 combinations with 1 digit, 21 combinations with 2 digits, 35 combinations with 3 digits, 35 combinations with 4 digits, 21 combinations with 5 digits, 7 combinations with 6 digits and 1 combinations with 7 digits. That makes a total of 2^7 - 1 = 127: too many for me to list. If digits can be repeated, there are infinitely many combinations.
You can make: 1 combination containing 0 digits, 7 combinations containing 1 digits, 21 combinations containing 2 digits, 35 combinations containing 3 digits, 35 combinations containing 4 digits, 21 combinations containing 5 digits, 7 combinations containing 6 digits, and 1 combinations containing 7 digits. That makes 2^7 = 128 in all.
19
654321-100000= 554321 combinations
It can have up to 5 digits.
Oh, what a happy little question! To find the number of combinations with the digits 1, 2, 4, and 8, you can use a simple formula. Since there are 4 digits, you can arrange them in 4! (4 factorial) ways, which is 4 x 3 x 2 x 1 = 24 combinations. Just imagine all the beautiful possibilities you can create with those numbers!
9
the answer is 95
Since there are only 3 digits available, repetition must be allowed. In that case, there are 30 combinations.
There is only one possible combination of a 13 digit number created from 13 digits. In a combination, the order of the digits does not matter so that 123 is the same as 132 or 312 etc. If there are 13 different digits (characters) there is 1 combination of 13 digits 13 combinations of 1 or of 12 digits 78 combinations of 2 or of 11 digits and so on There are 213 - 1 = 8191 in all. If the characters are not all different it is necessary to have more information.
6 for 3-digits, 6 for 2-digits, 3 for 1-digits, and 15 for all of the combinations