(3b - 1)(a - b)
2a-3ab = -1
(a+b)3=a3+b3+3ab(a+b) a3+b3=(a+b)3-3ab(a+b) a3+b3=(a+b)(a2-ab+b2)
Assuming that non-leading numbers are exponents, the expression becomes12a^2b + 8a - 5a^2b + 2ab - 4ab^2 + 6ab - 2a - 3ab= 7a^2b + 6a + 5ab - 4ab^2= a*(7ab + 6 + 5b - 4b^2)
5ab-2ab+4a-b+5b = 3ab+4a+4b
12ab+3ab=15ab
a = 1
To factor the expression 3ab + 3ac + 2b^2 + 2bc, we first look for common factors among the terms. We can factor out a 3a from the first two terms, and a 2 from the last two terms. This gives us 3a(b + c) + 2(b^2 + bc). Next, we notice that we can factor out a b from the second term in the second parenthesis, giving us the final factored form: 3a(b + c) + 2b(b + c).
(a+b)(3b+1)
(3ab*pi)
Provided multiplication is commutative, it is 8ab.
(3b - 1)(a - b)
3a(b+c)+2b(b+c)
It is an algebraic expression because it has no equality sign.
Factorizing 3ab + 3ac gives 3a (b + c).Factorizing is to express a number or expression as a product of factors.When factorizing always look for common factors. To factorize (3ab + 3ac) look for the highest factor between the two terms (3a). 3ab + 3ac = 3a (b + c)
(3a - 2c)(b - d)
6