6+z = 3 z = 3-6 z = -3
If z = 3, what is 5 x (6 – z)?
6/z
If you have a variable X that is normally distributed with mean m and variance s2 then the z-score, Z = (X - m)/s.Z has a standard Normal distribution.
z - 7
6 Zeros in a Million
S. M. Z. Al-Kindy has written: 'Luminescent labelling with coumarin-6-sulphonyl choloride'
Pierre De Fermat 's last Theorem. The conditions: x,y,z,n are the integers and >0. n>2. Proof: z^n=/x^n+y^n. We have; z^3=[z(z+1)/2]^2-[(z-1)z/2]^2 Example; 5^3=[5(5+1)/2]^2-[5(5-1)/2]^2=225-100=125 And z^3+(z-1)^3=[z(z+1)/2]^2-[(z-2)(z-1)/2]^2 Example; 5^3+4^3=[5(5+1)/2]^2-[(5-2)(5-1)/2]^2=225-36=189 And z^3+(z-1)^3+(z-2)^3=[z(z+1)/2]^2-[(z-3)(z-2)/2]^2 Example 5^3+4^3+2^3=[5(5+1)/2]^2-[(5-3)(5-2)/2]^2=225-9=216 And z^3+(z-1)^3+(z-2)^3+(z-3)^3=[z(z+1)/2]^2-[(z-4)(z-3)/2]^2 Example 5^3+4^3+3^3+2^3=[5(5+1)/2]^2-[(5-4)(5-3)/2]^2=225-1=224 General: z^3+(z-1)^3+....+(z-m)^3=[z(z+1)/2]^2-[(z-m-1)(z-m)/2]^2 We have; z^3=z^3+(z-m-1)^3 - (z-m-1)^3. Because: z^3+(z-m-1)^3=[z^3+(z-1)^3+....+(z-m-1)^3] - [(z-1)^3+....+(z-m)^3] So z^3=[z(z+1)/2]^2-[(z-m-2)(z-m-1)/2]^2 - [z(z-1)/2]^3+[(z-m-1)(z-m)/2]^2 - (z-m-1)^3. Similar: z^3=z^3+(z-m-2)^3 - (z-m-2)^3. So z^3=[z(z+1)/2]^2-[(z-m-3)(z-m-2)/2]^2 - [z(z-1)/2]^3+[(z-m-2)(z-m-1)/2]^2 - (z-m-2)^3. .... .... Suppose: z^n=x^n+y^n So z^(n-3)*z^3=x^(n-3)^n*x^3+y^(n-3)*y^3. So z^(n-3)*{[z(z+1)/2]^2-[(z-m-2)(z-m-1)/2]^2 - [z(z-1)/2]^3+[(z-m-1)(z-m)/2]^2 - (z-m-1)^3}=x^(n-3)*{[x(x+1)/2]^2-[(x-m-2)(x-m-1)/2]^2 - [x(x-1)/2]^3+[(x-m-1)(x-m)/2]^2 - (x-m-1)^3}+y^(n-3)*{[y(y+1)/2]^2-[(y-m-2)(y-m-1)/2]^2 - [y(y-1)/2]^3+[(y-m-1)(y-m)/2]^2 - (y-m-1)^3} Similar: z^(n-3)*{[z(z+1)/2]^2-[(z-m-3)(z-m-2)/2]^2 - [z(z-1)/2]^3+[(z-m-2)(z-m-1)/2]^2 - (z-m-2)^3=x^(n-3)*{[x(x+1)/2]^2-[(x-m-3)(x-m-2)/2]^2 - [x(x-1)/2]^3+[(x-m-2)(x-m-1)/2]^2 - (x-m-2)^3+y^(n-3)*{[y(y+1)/2]^2-[(y-m-3)(y-m-2)/2]^2 - [y(y-1)/2]^3+[(y-m-2)(y-m-1)/2]^2 - (y-m-2)^3. .... .... Because it is codified . So Impossible all are the integers. So: z^n=/x^n+y^n. ISHTAR.
Pierre De Fermat 's last Theorem. The conditions: x,y,z,n are the integers and >0. n>2. Proof: z^n=/x^n+y^n. We have; z^3=[z(z+1)/2]^2-[(z-1)z/2]^2 Example; 5^3=[5(5+1)/2]^2-[5(5-1)/2]^2=225-100=125 And z^3+(z-1)^3=[z(z+1)/2]^2-[(z-2)(z-1)/2]^2 Example; 5^3+4^3=[5(5+1)/2]^2-[(5-2)(5-1)/2]^2=225-36=189 And z^3+(z-1)^3+(z-2)^3=[z(z+1)/2]^2-[(z-3)(z-2)/2]^2 Example 5^3+4^3+2^3=[5(5+1)/2]^2-[(5-3)(5-2)/2]^2=225-9=216 And z^3+(z-1)^3+(z-2)^3+(z-3)^3=[z(z+1)/2]^2-[(z-4)(z-3)/2]^2 Example 5^3+4^3+3^3+2^3=[5(5+1)/2]^2-[(5-4)(5-3)/2]^2=225-1=224 General: z^3+(z-1)^3+....+(z-m)^3=[z(z+1)/2]^2-[(z-m-1)(z-m)/2]^2 We have; z^3=z^3+(z-m-1)^3 - (z-m-1)^3. Because: z^3+(z-m-1)^3=[z^3+(z-1)^3+....+(z-m-1)^3] - [(z-1)^3+....+(z-m)^3] So z^3=[z(z+1)/2]^2-[(z-m-2)(z-m-1)/2]^2 - [z(z-1)/2]^3+[(z-m-1)(z-m)/2]^2 - (z-m-1)^3. Similar: z^3=z^3+(z-m-2)^3 - (z-m-2)^3. So z^3=[z(z+1)/2]^2-[(z-m-3)(z-m-2)/2]^2 - [z(z-1)/2]^3+[(z-m-2)(z-m-1)/2]^2 - (z-m-2)^3. .... .... Suppose: z^n=x^n+y^n So z^(n-3)*z^3=x^(n-3)^n*x^3+y^(n-3)*y^3. So z^(n-3)*{[z(z+1)/2]^2-[(z-m-2)(z-m-1)/2]^2 - [z(z-1)/2]^3+[(z-m-1)(z-m)/2]^2 - (z-m-1)^3}=x^(n-3)*{[x(x+1)/2]^2-[(x-m-2)(x-m-1)/2]^2 - [x(x-1)/2]^3+[(x-m-1)(x-m)/2]^2 - (x-m-1)^3}+y^(n-3)*{[y(y+1)/2]^2-[(y-m-2)(y-m-1)/2]^2 - [y(y-1)/2]^3+[(y-m-1)(y-m)/2]^2 - (y-m-1)^3} Similar: z^(n-3)*{[z(z+1)/2]^2-[(z-m-3)(z-m-2)/2]^2 - [z(z-1)/2]^3+[(z-m-2)(z-m-1)/2]^2 - (z-m-2)^3=x^(n-3)*{[x(x+1)/2]^2-[(x-m-3)(x-m-2)/2]^2 - [x(x-1)/2]^3+[(x-m-2)(x-m-1)/2]^2 - (x-m-2)^3+y^(n-3)*{[y(y+1)/2]^2-[(y-m-3)(y-m-2)/2]^2 - [y(y-1)/2]^3+[(y-m-2)(y-m-1)/2]^2 - (y-m-2)^3. .... .... Because it is codified . So Impossible all are the integers. So: z^n=/x^n+y^n. ISHTAR.
Pierre De Fermat 's last Theorem. The conditions: x,y,z,n are the integers and >0. n>2. Proof: z^n=/x^n+y^n. We have; z^3=[z(z+1)/2]^2-[(z-1)z/2]^2 Example; 5^3=[5(5+1)/2]^2-[5(5-1)/2]^2=225-100=125 And z^3+(z-1)^3=[z(z+1)/2]^2-[(z-2)(z-1)/2]^2 Example; 5^3+4^3=[5(5+1)/2]^2-[(5-2)(5-1)/2]^2=225-36=189 And z^3+(z-1)^3+(z-2)^3=[z(z+1)/2]^2-[(z-3)(z-2)/2]^2 Example 5^3+4^3+2^3=[5(5+1)/2]^2-[(5-3)(5-2)/2]^2=225-9=216 And z^3+(z-1)^3+(z-2)^3+(z-3)^3=[z(z+1)/2]^2-[(z-4)(z-3)/2]^2 Example 5^3+4^3+3^3+2^3=[5(5+1)/2]^2-[(5-4)(5-3)/2]^2=225-1=224 General: z^3+(z-1)^3+....+(z-m)^3=[z(z+1)/2]^2-[(z-m-1)(z-m)/2]^2 We have; z^3=z^3+(z-m-1)^3 - (z-m-1)^3. Because: z^3+(z-m-1)^3=[z^3+(z-1)^3+....+(z-m-1)^3] - [(z-1)^3+....+(z-m)^3] So z^3=[z(z+1)/2]^2-[(z-m-2)(z-m-1)/2]^2 - [z(z-1)/2]^3+[(z-m-1)(z-m)/2]^2 - (z-m-1)^3. Similar: z^3=z^3+(z-m-2)^3 - (z-m-2)^3. So z^3=[z(z+1)/2]^2-[(z-m-3)(z-m-2)/2]^2 - [z(z-1)/2]^3+[(z-m-2)(z-m-1)/2]^2 - (z-m-2)^3. .... .... Suppose: z^n=x^n+y^n So z^(n-3)*z^3=x^(n-3)^n*x^3+y^(n-3)*y^3. So z^(n-3)*{[z(z+1)/2]^2-[(z-m-2)(z-m-1)/2]^2 - [z(z-1)/2]^3+[(z-m-1)(z-m)/2]^2 - (z-m-1)^3}=x^(n-3)*{[x(x+1)/2]^2-[(x-m-2)(x-m-1)/2]^2 - [x(x-1)/2]^3+[(x-m-1)(x-m)/2]^2 - (x-m-1)^3}+y^(n-3)*{[y(y+1)/2]^2-[(y-m-2)(y-m-1)/2]^2 - [y(y-1)/2]^3+[(y-m-1)(y-m)/2]^2 - (y-m-1)^3} Similar: z^(n-3)*{[z(z+1)/2]^2-[(z-m-3)(z-m-2)/2]^2 - [z(z-1)/2]^3+[(z-m-2)(z-m-1)/2]^2 - (z-m-2)^3=x^(n-3)*{[x(x+1)/2]^2-[(x-m-3)(x-m-2)/2]^2 - [x(x-1)/2]^3+[(x-m-2)(x-m-1)/2]^2 - (x-m-2)^3+y^(n-3)*{[y(y+1)/2]^2-[(y-m-3)(y-m-2)/2]^2 - [y(y-1)/2]^3+[(y-m-2)(y-m-1)/2]^2 - (y-m-2)^3. .... .... Because it is codified . So Impossible all are the integers. So: z^n=/x^n+y^n. ISHTAR.
Some words that have an M and a Z are:acclimatizeamazeAmazonbamboozleharmonizemazemaizemesmerizemezzaninemozzarellamuzzletraumatizezymurgy
6+z = 3 z = 3-6 z = -3
M. Z. Kopidake s has written: '\\'
y = sin6(z) dy/dz = 6*sin5(z)*cos(z) then d2y/dz2 = 6*5*sin4(z)*cos(z) + 6*sin5(z)*(-sin(z)) = 6*sin4(z)*[5*cos(z) - sin2(z)]
13
1
Z. M. Kurenkova has written: 'Narodnye khudozhestvennye promysly'