The radius of a circle inscribed in a regular hexagon equals the length of one side of the hexagon.
That depends on what area you choose to shade.
If the circle is inscribed in the square, the side length of the square is the same as the diameter of the circle which is twice its radius: → area_square = (2 × 5 in)² = 10² sq in = 100 sq in If the circle circumscribes the square, the diagonal of the square is the same as the diameter of the circle; Using Pythagoras the length of the side of the square can be calculated: → diagonal = 2 × 5 in = 10 in → side² + side² = diagonal² → 2 × side² = diagonal² → side² = diagonal² / 2 → side = diagonal / √2 → side = 10 in / √2 → area _square = (10 in / √2)² = 100 sq in / 2 = 50 sq in.
Assuming there is no border around the circle, then doubling the radius will give the length and width of a square (28 x 28 = 784cm2). The problem in your question is that you state it is a rectangle. Which means that the rectangle must be longer in length then width!
The width, or the length of a circle are its diameter.
The radius of a circle inscribed in a regular hexagon equals the length of one side of the hexagon.
There are different formula for: Height, Area, Perimeter, Angle, Length of Median Radius of inscribed circle Perimeter of inscribed circle Area of inscribed circle etc.
Yes.
If you know the length of the side of the (regular) hexagon to be = a the radius r of the inscribed circle is: r = a sqrt(3)/2
The formula for the area of a circle is pi x radius2. The radius is half the diameter, and the diameter of an inscribed circle is the same as the length of a side of the square.The formula for the area of a circle is pi x radius2. The radius is half the diameter, and the diameter of an inscribed circle is the same as the length of a side of the square.The formula for the area of a circle is pi x radius2. The radius is half the diameter, and the diameter of an inscribed circle is the same as the length of a side of the square.The formula for the area of a circle is pi x radius2. The radius is half the diameter, and the diameter of an inscribed circle is the same as the length of a side of the square.
The diameter of the circle equals the length of a side of the square
16.97056274
the area of a square is 49m^2 what is the length of one of its sides
6 cubic units ( from a mathematical brain)
The largest rectangle would be a square. If the circle has radius a, the diameter is 2a. This diameter would also be the diameter of a square of side length b. Using the Pythagorean theorem, b2 + b2 = (2a)2. 2b2 = 4a2 b2 = 2a2 b = √(2a2) or a√2 = the length of the sides of the square The area of a square of side length b is therefore (√(2a2))2 = 2a2 which is the largest area for a rectangle inscribed in a circle of radius a.
What do you mean by "arc length of a circle"? If you mean the arc length between two adjacent vertices of the inscribed polygon, then: If the polygon is irregular then the arc length between adjacent vertices of the polygon will vary and it is impossible to calculate and the angle between the radii must be measured from the diagram using a protractor if the angle is not marked. The angle is a fraction of a whole turn (which is 360° or 2π radians) which can be multiplied by the circumference of the circle to find the arc length between the radii: arc_length = 2πradius × angle/angle_of_full_turn → arc_length = 2πradius × angle_in_degrees/360° or arc_length = 2πradius × angle_in_radians/2π = radius × angle_in_radians If there is a regular polygon inscribed in a circle, then there will be a constant angle between the radii of the circle between the adjacent vertices of the polygon and each arc between adjacent vertices will be the same length; assuming you know the radius of the circle, the arc length is thus one number_of_sides_th of the circumference of the circle, namely: arc_length_between_adjacent_vertices_of_inscribed_regular_polygon = 2πradius ÷ number_of_sides
Yes. It follows from one of the circle theorems which states that the angle subtended in a semicircle is a right angle.