false
The graph of a polynomial in X crosses the X-axis at x-intercepts known as the roots of the polynomial, the values of x that solve the equation.(polynomial in X) = 0 or otherwise y=0
a
Graph factor
Yes.
Just like you graph about any function: Pick some values for x, calculate the corresponding values for y, plot the points, join in a smooth curve.
Not quite. The polynomial's linear factors are related - not equal to - the places where the graph meets the x-axis. For example, the polynomial x2 - 5x + 6, in factored form, is (x - 2) (x - 3). In this case, +2 and +3 are "zeroes" of the polynomial, i.e., the graph crosses the x-axis. That is, in an x-y graph, y = 0.
The graph of a polynomial in X crosses the X-axis at x-intercepts known as the roots of the polynomial, the values of x that solve the equation.(polynomial in X) = 0 or otherwise y=0
A polynomial function have a polynomial graph. ... That's not very helpful is it, but the most common formal definition of a function is that it is its graph. So, I can only describe it. A polynomial graph consists of "bumps", formally called local maxima and minima, and "inflection points", where concavity changes. What's more? They numbers and shape varies a lot for different polynomials. Usually, the poly with higher power will have more "bumps" and inflection points, but it is not a absolute trend. The best way to analyze the graph of a polynomial is through Calculus.
zero
a
B
a
graph!
For a polynomial of order n there are n+1 coefficients that can be changed. There are therefore 2^(n+1) related polynomials with coefficients of the same absolute values. All these generate graphs whose shapes differ.If only the constant coefficient is switched, the graph does not change shape but moves vertically. If every coefficient is switched then the graph is reflected in the horizontal axis. For all other sign changes, there are intermediate changes in the shape of the graph.
Graph factor
graph apex xD
Yes.