There are infinitely many options. The equation could be a polynomial of degree greater than 1, or it could be a power function, a log function or any combination of these with trig functions. The problem is exacerbated by the fact that there is no clue in the question as to what a stands for.
A parabola is a graph of a 2nd degree polynomial function. Two graph a parabola, you must factor the polynomial equation and solve for the roots and the vertex. If factoring doesn't work, use the quadratic equation.
That it is non-linear. If it is a graph of a polynomial, it would need to be a polynomial of odd order. But it could be the graph of the tangent function, or a combination of reciprocal functions over a limited domain. In fact the s shaped line, by itself, indicates very little.
false
no
The degree is equal to the maximum number of times the graph can cross a horizontal line.
There are infinitely many options. The equation could be a polynomial of degree greater than 1, or it could be a power function, a log function or any combination of these with trig functions. The problem is exacerbated by the fact that there is no clue in the question as to what a stands for.
A non-linear graph. It could be a polynomial (of a degree greater than 1), a power function, a logarithmic or trigonometric graph. In fact any mathematical function other than a linear equation.
A parabola is a graph of a 2nd degree polynomial function. Two graph a parabola, you must factor the polynomial equation and solve for the roots and the vertex. If factoring doesn't work, use the quadratic equation.
With difficulty. Plot a graph of the polynomial and see where it crosses the x axis. If it does, then y=0 at that point, and (x-a) is a factor. Sometimes you might spot where the polynomial is zero just by trying various values.
That it is non-linear. If it is a graph of a polynomial, it would need to be a polynomial of odd order. But it could be the graph of the tangent function, or a combination of reciprocal functions over a limited domain. In fact the s shaped line, by itself, indicates very little.
An even function is symmetric about the y-axis. The graph to the left of the y-axis can be reflected onto the graph to the right. An odd function is anti-symmetric about the origin. The graph to the left of the y-axis must be reflected in the y-axis as well as in the x-axis (either one can be done first).
Either graph the polynomial on graph paper manually or on a graphing calculator. If it is a "y=" polynomial, then the zeroes are the points or point where the polynomial touches the x-axis. If it is an "x=" polynomial, then the zeroes are the points or point where the polynomial touches the y-axis. If it touches neither, then it has no zeroes.
Easy. Same thing as the graph of f(x) = x^2 + 1 which have NO intercept.
The zeros of a polynomial represent the points at which the graph crosses (or touches) the x-axis.
Yes, over the real set of numbers. For example, the graph of y=x2+1 is a regular parabola with a vertex that is one unit above the origin. Because the vertex is the lowest point on the graph, and 1>0, there is no way for it to touch the x-axis.NOTE: But if we're considering imaginary numbers, the values "i" and "-i" would be the zeroes. I'm pretty sure that all polynomial functions have a number of zeroes equal to their degree if we include imaginary numbers.
false