Graph
factor
Chat with our AI personalities
a
No integer roots. Quadratic formula gives 1.55 and -0.81 to the nearest hundredth.
Yes, easily. Even though the question did not ask what the polynomial was, only if I could find it, here is how you would find the polynomial: Since the coefficients are rational, the complex (or imaginary) roots must form a conjugate pair. That is to say, the two complex roots are + 3i and -3i. The third root is 7. So the polynomial, in factorised form, is (x - 3i)(x + 3i)(x - 7) = (x2 + 9)(x - 7) = x3 - 7x2 + 9x - 63
By solving it. There is no single easy way to solve all equations; different types of equations required different methods. You have to learn separately how to solve equations with integer polynomials, rational equations (where polynomials can also appear in the denominator), equations with square roots and other roots, trigonometric equations, and others.Sometimes, the knowledge of a type of equations can help you quickly guess the number of solutions. Here are a few examples. An equation like:sin(x) = 0.5has an infinite number of solutions, because the sine function is periodic. An equation with a polynomial - well, in theory, you can factor a polynomial of degree "n" into "n" linear factors, meaning the polynomial can have "n" solutions. However, it may have multiple solutions, that is, some of the factors may be equal. Also, some of the solutions may be complex. A real polynomial of odd degree has at least one real solution.By solving it. There is no single easy way to solve all equations; different types of equations required different methods. You have to learn separately how to solve equations with integer polynomials, rational equations (where polynomials can also appear in the denominator), equations with square roots and other roots, trigonometric equations, and others.Sometimes, the knowledge of a type of equations can help you quickly guess the number of solutions. Here are a few examples. An equation like:sin(x) = 0.5has an infinite number of solutions, because the sine function is periodic. An equation with a polynomial - well, in theory, you can factor a polynomial of degree "n" into "n" linear factors, meaning the polynomial can have "n" solutions. However, it may have multiple solutions, that is, some of the factors may be equal. Also, some of the solutions may be complex. A real polynomial of odd degree has at least one real solution.By solving it. There is no single easy way to solve all equations; different types of equations required different methods. You have to learn separately how to solve equations with integer polynomials, rational equations (where polynomials can also appear in the denominator), equations with square roots and other roots, trigonometric equations, and others.Sometimes, the knowledge of a type of equations can help you quickly guess the number of solutions. Here are a few examples. An equation like:sin(x) = 0.5has an infinite number of solutions, because the sine function is periodic. An equation with a polynomial - well, in theory, you can factor a polynomial of degree "n" into "n" linear factors, meaning the polynomial can have "n" solutions. However, it may have multiple solutions, that is, some of the factors may be equal. Also, some of the solutions may be complex. A real polynomial of odd degree has at least one real solution.By solving it. There is no single easy way to solve all equations; different types of equations required different methods. You have to learn separately how to solve equations with integer polynomials, rational equations (where polynomials can also appear in the denominator), equations with square roots and other roots, trigonometric equations, and others.Sometimes, the knowledge of a type of equations can help you quickly guess the number of solutions. Here are a few examples. An equation like:sin(x) = 0.5has an infinite number of solutions, because the sine function is periodic. An equation with a polynomial - well, in theory, you can factor a polynomial of degree "n" into "n" linear factors, meaning the polynomial can have "n" solutions. However, it may have multiple solutions, that is, some of the factors may be equal. Also, some of the solutions may be complex. A real polynomial of odd degree has at least one real solution.
2x^3 - 5x^2 - 14x + 8 Let P(x) represents the cubic polynomial. We can find the sum of x-values which make P(x) = 0, (the sum of the roots of the equation) P(x) = 2x^3 - 5x^2 - 14x + 8 P(x) = 0 2x^3 - 5x^2 - 14x + 8 = 0 Since the degree of this polynomial is odd, then the sum of the roots is -[a(n - 1)/an], where a(n-1) is -5 and an is 2. So we have, -[a(n - 1)/an] = -(-5/2) = 5/2 Thus the sum of the roots is 5/2.