answersLogoWhite

0

yes, every continuous function is integrable.

User Avatar

Wiki User

15y ago

Still curious? Ask our experts.

Chat with our AI personalities

JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao

Add your answer:

Earn +20 pts
Q: Are continuous functions integrable
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

What function is integrable but not continuous?

A function may have a finite number of discontinuities and still be integrable according to Riemann (i.e., the Riemann integral exists); it may even have a countable infinite number of discontinuities and still be integrable according to Lebesgue. Any function with a finite amount of discontinuities (that satisfies other requirements, such as being bounded) can serve as an example; an example of a specific function would be the function defined as: f(x) = 1, for x < 10 f(x) = 2, otherwise


Is a corner continuous?

Yes, a corner is continuous, as long as you don't have to lift your pencil up then it is a continuous function. Continuous functions just have no breaks, gaps, or holes.


What is the important similarity between the uniform and normal probability distribution?

They are both continuous, symmetric distribution functions.


What are some similarities and differences between quartic and cubic functions?

The similarities are that they are polynomial functions and therefore continuous and differentiable.A real cubic will has an odd number of roots (and so must have a solution), a quartic has an even number of roots and so may have no solutions.


How do I determine if a function is a power function Power functions must be able to be written as such kxa. Would I compare the function to the format of a power function For ex KEv12kv5?

Identify the degree and leading coefficient of polynomial functions. ... the bird problem, we need to understand a specific type of function. A power ... A power function is a function that can be represented in the form ... Example 3.4.1: Identifying Power Functions ... Comparing Smooth and Continuous Graphs.