It is not clear what the question requires. Yes, there are plenty of equations that have the same solution. For example,
each and every equation of direct proportionality has the solution (0, 0). So what?
every polynomial of the form
y = anxn + an-1xn-1 + ... + a1x + a0 has the solution (0, a0). Again, so what?
equal equations.
Equations with the same solution are called dependent equations, which are equations that represent the same line; therefore every point on the line of a dependent equation represents a solution. Since there is an infinite number of points on a line, there is an infinite number of simultaneous solutions. For example, 2x + y = 8 4x + 2y = 16 These equations are dependent. Since they represent the same line, all points that satisfy either of the equations are solutions of the system. A system of linear equations is consistent if there is only one solution for the system. A system of linear equations is inconsistent if it does not have any solutions.
Actually not. Two linear equations have either one solution, no solution, or many solutions, all depends on the slope of the equations and their intercepts. If the two lines have different slopes, then there will be only one solution. If they have the same slope and the same intercept, then these two lines are dependent and there will be many solutions (infinite solutions). When the lines have the same slope but they have different intercept, then there will be no point of intersection and hence, they do not have a solution.
The solution of a system of linear equations is a pair of values that make both of the equations true.
A system of equations will have no solutions if the line they represent are parallel. Remember that the solution of a system of equations is physically represented by the intersection point of the two lines. If the lines don't intersect (parallel) then there can be no solution.
Equivalent equations
equal equations.
Consistent equations are two or more equations that have the same solution.
Equations with the same solution are called dependent equations, which are equations that represent the same line; therefore every point on the line of a dependent equation represents a solution. Since there is an infinite number of points on a line, there is an infinite number of simultaneous solutions. For example, 2x + y = 8 4x + 2y = 16 These equations are dependent. Since they represent the same line, all points that satisfy either of the equations are solutions of the system. A system of linear equations is consistent if there is only one solution for the system. A system of linear equations is inconsistent if it does not have any solutions.
If the equations or inequalities have the same slope, they have no solution or infinite solutions. If the equations/inequalities have different slopes, the system has only one solution.
Equations are said to be equivalent if they have the same solution. This definition also holds true in rational equations or equations involving rational expressions. For instance, the equations 2x = 14 and x - 3 = 4 are equivalent. Why? It's because they have the same solution, that is x = 7.
Actually not. Two linear equations have either one solution, no solution, or many solutions, all depends on the slope of the equations and their intercepts. If the two lines have different slopes, then there will be only one solution. If they have the same slope and the same intercept, then these two lines are dependent and there will be many solutions (infinite solutions). When the lines have the same slope but they have different intercept, then there will be no point of intersection and hence, they do not have a solution.
4+4=8 2+6=8
Yes you can, if the solution or solutions is/are real. -- Draw the graphs of both equations on the same coordinate space on the same piece of graph paper. -- Any point that's on both graphs, i.e. where they cross, is a solution of the system of equations. -- If both equations are linear, then there can't be more than one such point.
The graph of a system of equations with the same slope will have no solution, unless they have the same y intercept, which would give them infinitely many solutions. Different slopes means that there is one solution.
You get no solution if the lines representing the graphs of both equations have the same slope, i.e. they're parallel. "No solution" is NOT an answer.
The solution of a system of linear equations is a pair of values that make both of the equations true.