ac + 2ad + 2bc + 4bd = a(c + 2d) + 2b(c + 2d) = (a + 2b)(c + 2d) Now expand to confirm your answer: c(a + 2b) + 2d(a + 2b) = ac + 2bc + 2ad + 4bd ≡ ac + 2ad + 2bc + 4bd
BC' + BC' = 2BC'
ab-2ac+b^2-2bc
3ab + 3ac + 2b2 + 2bc = 3a(b + c) + 2b(b + c) = (3a + 2b)(b + c)
ac - 3ad - 2bc + 6bd = a(c - 3d) - 2b(c - 3d) = (a - 2b)(c - 3d)
ac + 2ad + 2bc + 4bd = a(c + 2d) + 2b(c + 2d) = (a + 2b)(c + 2d) Now expand to confirm your answer: c(a + 2b) + 2d(a + 2b) = ac + 2bc + 2ad + 4bd ≡ ac + 2ad + 2bc + 4bd
4ac + 2ad + 2bc +bd = 2a*(2c + d) + b*(2c + d) = (2c + d)*(2a + b)
(2a + b)(2c + d)
(a + 2b)(c + 2d)
(2a + b)(2c + d)
(2a + b)(2c + d).
(2a + b)(2c + d)
a2+2ab+b2+2ac+2bc+c2+2ad+2ae+2bd+2be+2cd+2ce+d2+2de+e2
d = a - 2bc
BC' + BC' = 2BC'
No. 1a and 3d are linear, but 2bc is not. ■
ab-2ac+b^2-2bc