sin = opp/hyp cos = adj/hyp tan = opp/adj
to find the measure of an angle. EX: if sin A = 0.1234, then inv sin (0.1234) will give you the measure of angle A
Sine sum identity: sin (x + y) = (sin x)(cos y) + (cos x)(sin y)Sine difference identity: sin (x - y) = (sin x)(cos y) - (cos x)(sin y)Cosine sum identity: cos (x + y) = (cos x)(cos y) - (sin x)(sin y)Cosine difference identity: cos (x - y) = (cos x)(cos y) + (sin x)(sin y)Tangent sum identity: tan (x + y) = [(tan x) + (tan y)]/[1 - (tan x)(tan y)]Tangent difference identity: tan (x - y) = [(tan x) - (tan y)]/[1 + (tan x)(tan y)]
It is cosine*cosine*cosine.
Sin is sine. Cos is cosine. http://en.wikipedia.org/wiki/Sine_curve http://en.wikipedia.org/wiki/Cosine_curve In terms of trigonometric identities sin2A=2sinAcosA cos2A=cos2A-sin2A sin2A-cos2A=2sinAcosA-cos2A+sin2A === === sin(A) - cos(A) = sqrt(2)sin(A-45)
All three are ratios which do not have units.
sin = opp/hyp cos = adj/hyp tan = opp/adj
The sine rule is a comparison of ratios: (sin A)/a = (sin B)/b = (sin C)/c. The cosine rule looks similar to the theorem of Pythagoras: c2 = a2 + b2 - 2ab cos C.
No, it does not.
The cosine function on a right triangle is Adjacent leg divided by the hypotenuse of the triangle.
Sine and cosine.
Sine(Sin) Cosine(Cos) Tangent(Tan) ---- -Sin of angle A=opposite leg of angle A / hypotenuse -Cos of angle A= Adjacent leg of angle A / Hypotenuse -Tan of angle A= opposite leg of angle A / Adjacent lef of angle A
sin 0 = 0 cos 0 = 1
Generally, the derivative of sine is cosine.
Trigonometric ratios are ratios of the sides of a right triangle, involving the lengths of the sides and the angles of the triangle. The main trigonometric ratios are sine, cosine, and tangent, which are abbreviated as sin, cos, and tan respectively. These ratios are used in trigonometry to relate the angle of a right triangle to its side lengths.
Sin, cosine, and tangent are considered the three main of trigonometry, commonly written as sin, cos, and tan. sin(θ) = O/H cos(θ) = A/H tan(θ) = O/A Where O is opposite Where H is Hypotenuse Where A is Adjacent To assist further in understanding: http://www.mathsisfun.com/sine-cosine-tangent.html
In advanced mathematics, familiar trigonometric ratios such as sine, cosine or tan are defined as infinite series. For example, sin(x) = x - x3/3! + x5/5! - ... Such series are used to calculate trig ratios and the proof of their their convergence to a specific value depends on calculus.