The quadratic (parabola) intercepts the x-axis when y = 0. So substitute y=0 into y = f(x). Then you can solve for the x-values by any number of ways: Factoring, completing the square, or Quadratic Formula. It may turn out that the values of x which satisfies y=0 are complex {have an imaginary component}, which will tell you that the parabola does not have an x-intercept.
Roots, zeroes, and x values are 3 other names for solutions of a quadratic equation.
y = x This is a line and a function. Function values are y values.
It will touch it at exactly 1 point. If a quadratic function is given as f(x) = ax2 + bx + c, let the discriminant be denoted as D. Then the graph of y = f(x) will cross the x-axis at the x-values x = (-b + sqrt(D))/(2a) and x = (-b - sqrt(D))/(2a). When the discriminant D = 0, these 2 x-values are actually the same. Thus the graph will touch the x-axis only once.
A vertical line test can be used to determine whether a graph is a function or not. If a vertical line intersects the graph more than once, then the graph is not a function.
It is a quadratic function of x. It takes different values which depend on the values given to x. It represents a parabola.
The zeros of a quadratic function, if they exist, are the values of the variable at which the graph crosses the horizontal axis.
Just like any other equation, you can set up a table of x values, and calculate the corresponding y values. Then plot the points on the graph. In this case, it helps to have some familiarity with quadratic equations (you can find a discussion in algebra books), and recognize (from the form of the equation) whether your quadratic equation represents a parabola, a circle, an ellipse, or a hyperbola.
I'd say no. A quadratic is not linear. It's slope is constantly changing, so there is not one proportion which can be used to predict future values.
x2+2x+1=y or y=x2 In this function the domain is x equals real values and the range is y equals all real values provided y is more than or equal to zero.
-7,-25
Simply learn and use the quadratic equation formula.
It is finding the values of the variable that make the quadratic equation true.
-1 -18 -25 -7
The quadratic equation is y=ax^2 +bx +c. So, you substitute in the values of a, b, and c to the quadratic formula (x= -b +/- \|b^2-4ac all over 2a) in order to find the x value then, substitute in x to the quadratic equation and solve. You will have point (x,y) to graph
The quadratic (parabola) intercepts the x-axis when y = 0. So substitute y=0 into y = f(x). Then you can solve for the x-values by any number of ways: Factoring, completing the square, or Quadratic Formula. It may turn out that the values of x which satisfies y=0 are complex {have an imaginary component}, which will tell you that the parabola does not have an x-intercept.
First rewrite the quadratic equation in the form: ax2 + bx + c = 0 where a , b and c are constant coefficients. Clearly, a is not = 0 for if it were then you would have a linear equation and not a quadratic. Then the roots of the quadratic are: x = [-b +/- sqrt(b2 - 4ac)]/2a where using the + and - values of the square root result in two solutions.