answersLogoWhite

0

multiply the chord length and radius and divide by 2

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Other Math

A chord of a circle has length 4.2 cm and is 8 cm from the center of the circle what is the radius of the circle?

To find the radius of the circle, we can use the Pythagorean theorem. The chord divides the circle into two equal parts, each forming a right triangle with the radius. The radius, the distance from the center to the chord, and half the length of the chord form a right triangle. Using the Pythagorean theorem, we have (radius)^2 = (distance from center)^2 + (1/2 * chord length)^2. Substituting in the given values, we get (radius)^2 = 8^2 - (1/2 * 4.2)^2. Solving for the radius gives us a radius of approximately 7.48 cm.


Find the lenght of a chord that cuts off an arc of measure 60 degrees in a circle of radius 12?

The radial length equals the chord length at a central angle of 60 degrees.


How do you find the area of a segment of a circle if the radius of the circle and the chord of the segment each have length 12?

There must be an equilateral triangle within the sector of the circle and so:- Area of sector: 60/360*pi*12*12 = 75.39822369 Area of triangle: 0.5*12*12*sin(60 degrees) = 62.35382907 Area of segment: 75.39822369-62.35382907 = 13.04439462 or about 13 square units


How do you Find radius from chord length?

Assuming you know c (not Arc ZX) and m then the formula would be: r = (m² + ¼c²)/2m if all you need to know is the radius of an arc, and you have the base length and rise, the formula would be: radius = (rise2 + 1/2 width2) / 2 x rise


How do you find the length of a segment when given the endpoint and midpoint?

double the length

Related Questions

What is the formula to calculate the radius of a segment knowing the height of the segment and cord length?

Assume that the height of the segment is h, the chord length is c and the radius is r then: r2=(r-h)2+(c/2)2 (We join two radii to the two ends of the chord then extend the height of the segment to the center of the circle in which the segment is inscribed so this height will bisect the chord and you use the pythagorean theorem to find the radius)


How do you find the radius given the chord length?

If you are given a chord length of a circle, unless you are given more information about the chord, you can not determine what the radius of the circle will be. This is because the chord length in a circle can vary from a length of (essentially) 0, up to a length of double the radius (the diameter). The best you can say about the radius if given the chord length, is that the length of the radius is at least as long has half half the chord length.


How do you find the chord length with the central angle and radius?

If the central angle is 70 and the radius is 8cm, how do you find out the chord lenght?


How do you find the radius of a circle if you know the length of a chord is 4 cm length?

Unless the chord is the diameter, there is no way to measure the radius of the circle. This is because the radius is in no way dependent on chord length since circles have infinite amount of chord lengths.


The radius of curvature is 10 ft and the height of the segment is 2 ft what is the length of the chord?

To find the length of the chord, you can use the formula for the length of the chord in a circle segment: Chord length = 2 * sqrt(r^2 - h^2) where r is the radius of curvature (10 ft) and h is the height of the segment (2 ft). Plugging in these values, you get Chord length = 2 * sqrt(10^2 - 2^2) = 2 * sqrt(96) = 2 * 4 * sqrt(6) = 8 * sqrt(6) ft.


How do you find a chord length with the central angle and radius given?

If the radius is 8cm and the central angle is 70, how do yu workout the chord lenght?


How do you find radius of a circle if cord length is given?

The longest chord in a circle is its diameter and halve of this is its radius.


How do you find the measure of an arc knowing only the chord of arc and radius?

you have a triangle formed by the radius on 2 and the chord on the other. the angle in that triangle that is opposite the chord, find its measure in radians take that measure (in radians) and multiply it by the radius to get the arc length


How do you find the radius of a circle if you know the segment?

if the segment is the whole length of the circle divide it by 2


How do you find an area of a segment of a circle?

The solution depends on the information supplied. Basically, you find the area of the sector containing the segment and then deduct the area of the triangle formed by the chord and the two radii enclosing the sector. If you are given the radius(r) of the circle and the height(h) then construct a radius that is perpendicular to and bisects the chord. This will create two congruent triangles which together form the main triangle. Using Pythagoras enables the half-chord length to be calculated as the hypotenuse is r and the height (also the length of the third side) is r-h. With this information the full chord length can be established and thus the area of the main triangle. Using sine or cosine methods enables the sector angle at the centre to be calculated and thus the sector area. Simple subtraction produces the area of the segment. If you are given the radius and the chord(c) length then the construction referred to above enables the height of the main triangle to be calculated and a similar process will generate the area of that triangle and the sector area. This, in turn, will enable the segment area to be determined.


Find chord length with radius and arc length known?

r = known radius x = known arc length --------------------------- C (circumference of circle) = 2 * PI * r A (angle of chord in degrees) = x / C * 360 L (length of chord) = r * sin(A/2) * 2


A chord of a circle has length 4.2 cm and is 8 cm from the center of the circle what is the radius of the circle?

To find the radius of the circle, we can use the Pythagorean theorem. The chord divides the circle into two equal parts, each forming a right triangle with the radius. The radius, the distance from the center to the chord, and half the length of the chord form a right triangle. Using the Pythagorean theorem, we have (radius)^2 = (distance from center)^2 + (1/2 * chord length)^2. Substituting in the given values, we get (radius)^2 = 8^2 - (1/2 * 4.2)^2. Solving for the radius gives us a radius of approximately 7.48 cm.