To find other points on a parabola, you can use its equation, typically in the form (y = ax^2 + bx + c). By selecting different values for (x) and substituting them into the equation, you can calculate the corresponding (y) values. Alternatively, you can also use the vertex form, (y = a(x-h)^2 + k), where ((h, k)) is the vertex, to find points by choosing (x) values around the vertex. Plotting these points will help visualize the shape of the parabola.
y*y = 4ax
-- The roots of a quadratic equation are the values of 'x' that make y=0 . -- When you graph a quadratic equation, the graph is a parabola. -- The points on the parabola where y=0 are the points where it crosses the x-axis. -- If it doesn't cross the x-axis, then the roots are complex or pure imaginary, and you can't see them on a graph.
3?
To find the value of a in a parabola opening up or down subtract the y-value of the parabola at the vertex from the y-value of the point on the parabola that is one unit to the right of the vertex.
There are several ways of defining a parabola. Here are some:Given a straight line and a point not on that line, a parabola is the locus of all points that are equidistant from that point (the focus) and the line (directrix).A parabola is the intersection of the surface of a right circular cone and a plane parallel to a generating line of that surface.A parabola is the graph of a quadratic equation.
Select a set of x values and find the value of y or f(x) - depending on how the parabola is defined. These are the values that you need to graph.
To graph a parabola you must find the axis of symmetry, determine the focal distance and write the focal as a point, and find the directrix. These are all the main points you need to be able to draw a parabola.
y*y = 4ax
They are the x-values (if any) of the points at which the y-value of the equation representing a parabola is 0. These are the points at which the parabola crosses the x-axis.
A parabola has one vertex (but not in the sense of an angle), infinitely many points and no edges.
All of the points on a parabola define a parabola. However, the vertex is the point in which the y value is only used for one point on the parabola.
-- The roots of a quadratic equation are the values of 'x' that make y=0 . -- When you graph a quadratic equation, the graph is a parabola. -- The points on the parabola where y=0 are the points where it crosses the x-axis. -- If it doesn't cross the x-axis, then the roots are complex or pure imaginary, and you can't see them on a graph.
3?
Yes.
By the geometric definition of a line, it is represented by two points, and all points on the line are collinear, between or extrapolating to infinity from the straight line made by the two points. In other words, a line is straight, and can be represented by a binomial function (example: y=2x+1). A parabola is a function, but cannot be described mathematically as a line.
A parabola has no endpoints: it extends to infinity.A parabola has no endpoints: it extends to infinity.A parabola has no endpoints: it extends to infinity.A parabola has no endpoints: it extends to infinity.
The highest point of a parabola is called the "maximum," while the lowest point is referred to as the "minimum." These points occur at the vertex of the parabola. If the parabola opens upwards, it has a minimum point, and if it opens downwards, it has a maximum point.