To find the discriminant of a quadratic equation in the form ax^2 + bx + c = 0, you use the formula Δ = b^2 - 4ac. The discriminant helps determine the nature of the roots: if Δ > 0, there are two distinct real roots; if Δ = 0, there is one real root (a repeated root); and if Δ < 0, there are no real roots (two complex conjugate roots). The number of real solutions is directly related to the discriminant's value.
6
The answer depends on what the factors will be. For example, every quadratic can be factored if you allow complex numbers. If not, then it helps to use the discriminant. If it is positive, there are two real factors or solutions. If that positive number is a perfect square, then the factors are rational numbers. If not, they are real but not rational (irrational). If the discriminant is 0, there is one real solution. Lastly, if it is negative, there are no real solutions.
There are an indeterminate number of invisible solutions.
The square of any real number is non-negative. So no real number can have a negative square. Consequently, a negative number cannot have a real square root. If the discriminant is less than zero, the quadratic equation requires the square root of that negative value, which cannot be real and so must be imaginary.
discriminant
A quadratic equation is wholly defined by its coefficients. The solutions or roots of the quadratic can, therefore, be determined by a function of these coefficients - and this function called the quadratic formula. Within this function, there is one part that specifically determines the number and types of solutions it is therefore called the discriminant: it discriminates between the different types of solutions.
The discriminant must be a perfect square or a square of a rational number.
The discriminant is -439 and so there are no real solutions.
6
It has no real roots.
If you mean 2x^2 -3x +8 = 0 then the discriminant works out as -55 which is less than 0 meaning that the equation has no real roots and so therefore no solutions are possible.
the maximum number of solutions to a quadratic equation is 2. However, usually there is only 1.
The answer depends on what the factors will be. For example, every quadratic can be factored if you allow complex numbers. If not, then it helps to use the discriminant. If it is positive, there are two real factors or solutions. If that positive number is a perfect square, then the factors are rational numbers. If not, they are real but not rational (irrational). If the discriminant is 0, there is one real solution. Lastly, if it is negative, there are no real solutions.
A quadratic equation has the formAx2 + Bx + C = 0,where A, B, and C are numbers and x is a variable. Since the polynomial here has degree 2 (the highest exponent of x), it either has 0, 1, 2, or infinitely many solutions.The infinitely many solutions only happens when A, B, and C are all equal to zero. Otherwise, we can find the number of solutions by examining the discriminant, which in this case is the quantity B2 - 4AC. If the discriminant is negative, there are no (real) solutions. If the discriminant equals zero, we have what is called a "repeated root" and there is exactly one (real) solution. Otherwise, if the discriminant is positive, there are two distinct (real) solutions.
In the quadratic formula, the discriminant is b2-4ac. If the discriminant is positive, the equation has two real solutions. If it equals zero, the equation has one real solution. If the discriminant is negative, it has two imaginary solutions. This is because you find the square root of the discriminant and add or subtract it from -b and divide the sum or difference by 2a. If the square root is of a positive number, then you get two different solutions, one from adding the discriminant to -b and one from subtracting the discriminant from -b. If the square root is of zero, then it equals zero, and the solution is -b/2a. If the square root is of a negative number, then you have two imaginary solutions because you can't take the square root of a negative number and get a real number. One solution is from subtracting the discriminant from -b and dividing by 2a, and the other is from adding it to -b and dividing by 2a. The parabola on the left has a positive discriminant. The parabola in the middle has a discriminant of zero. The parabola on the right has a negative discriminant.
There are an infinite number of different quadratic equations. The quadratic formula is a single formula that can be used to find the pair of solutions to every quadratic equation.
There are an indeterminate number of invisible solutions.