The answer depends on the distribution of the random variable. For some variables it is easy to calculate the cumulative distribution, F(x).
Then, the probability between the values p and q is F(q) - F(p). WARNING: This might need minor modification if the the distribution is discrete.
The normal distribution is one which, in general, cannot be evaluated analytically. However, you can convert p and q to the x=corresponding z-score. If m is the mean and s the standard deviations, then z1 = (p - m)/s and z2 = (q - m)/s. The cumulative probability function for Z is tabulated (widely available online) and the probability between p and q is F(z2) - F(z1).
Note, however, that sometimes the tabulated values are (Prob - 0.5), or are 1 - Prob(z) so read notes to the table.
From what ive gathered standard error is how relative to the population some data is, such as how relative an answer is to men or to women. The lower the standard error the more meaningful to the population the data is. Standard deviation is how different sets of data vary between each other, sort of like the mean. * * * * * Not true! Standard deviation is a property of the whole population or distribution. Standard error applies to a sample taken from the population and is an estimate for the standard deviation.
Standard deviation doesn't have to be between 0 and 1.
Standard deviation is the square root of the variance.
The distance between the middle and the inflection point is the standard deviation.
Standard error is the difference between a researcher's actual findings and their expected findings. Standard error measures the accuracy of one's predictions. Standard deviation is the difference between the results of one's experiment as compared with other results within that experiment. Standard deviation is used to measure the consistency of one's experiment.
You need to know the standard deviation or standard error to answer the question.
From what ive gathered standard error is how relative to the population some data is, such as how relative an answer is to men or to women. The lower the standard error the more meaningful to the population the data is. Standard deviation is how different sets of data vary between each other, sort of like the mean. * * * * * Not true! Standard deviation is a property of the whole population or distribution. Standard error applies to a sample taken from the population and is an estimate for the standard deviation.
The mean deviation (also called the mean absolute deviation) is the mean of the absolute deviations of a set of data about the data's mean. The standard deviation sigma of a probability distribution is defined as the square root of the variance sigma^2,
Standard deviation doesn't have to be between 0 and 1.
Standard deviation is the square root of the variance.
It depends what you're asking. The question is extremely unclear. Accuracy of what exactly? Even in the realm of statistics an entire book could be written to address such an ambiguous question (to answer a myriad of possible questions). If you simply are asking what the relationship between the probability that something will occur given the know distribution of outcomes (such as a normal distribution), the mean of that that distribution, and the the standard deviation, then the standard deviation as a represents the spread of the curve of probability. This means that if you had a cure where 0 was the mean, and 3 was the standard deviation, the likelihood of observing a value of 12 (or -12) would be likely inaccurate if that was your prediction. However, if you had a mean of 0 and a standard deviation of 100, the likelihood of observing of a 12 (or -12) would be quite likely. This is simply because the standard deviation provides a simple representation of the horizontal spread of probability on the x-axis.
Standard deviation is the variance from the mean of the data.
Approx 0.55
Standard error of the mean (SEM) and standard deviation of the mean is the same thing. However, standard deviation is not the same as the SEM. To obtain SEM from the standard deviation, divide the standard deviation by the square root of the sample size.
A standard deviation is a statistical measure of the variation there in a population or group. A standard deviation of 1 means that 68% of the members of the population are withing plus or minus the value of the standard deviation from the average. For example: assume the average height of men is 5 feet 9 inches, and the standard deviation is three inches. Then 68% of all men are between 5' 6" and 6' which is 5'9" plus or minus 3 inches. [Note: this is only to illustrate and is not intended to be a real/correct statistic of men's heights.]
The distance between the middle and the inflection point is the standard deviation.
A particular fruit's weights are normally distributed, with a mean of 760 grams and a standard deviation of 15 grams. If you pick one fruit at random, what is the probability that it will weigh between 722 grams and 746 grams-----A particular fruit's weights are normally distributed, with a mean of 567 grams and a standard deviation of 25 grams.