It depends what you're asking. The question is extremely unclear. Accuracy of what exactly? Even in the realm of statistics an entire book could be written to address such an ambiguous question (to answer a myriad of possible questions).
If you simply are asking what the relationship between the probability that something will occur given the know distribution of outcomes (such as a normal distribution), the mean of that that distribution, and the the standard deviation, then the standard deviation as a represents the spread of the curve of probability. This means that if you had a cure where 0 was the mean, and 3 was the standard deviation, the likelihood of observing a value of 12 (or -12) would be likely inaccurate if that was your prediction. However, if you had a mean of 0 and a standard deviation of 100, the likelihood of observing of a 12 (or -12) would be quite likely. This is simply because the standard deviation provides a simple representation of the horizontal spread of probability on the x-axis.
Chat with our AI personalities
The standard deviation is the square root of the variance.
The more precise a result, the smaller will be the standard deviation of the data the result is based upon.
Standard error of the mean (SEM) and standard deviation of the mean is the same thing. However, standard deviation is not the same as the SEM. To obtain SEM from the standard deviation, divide the standard deviation by the square root of the sample size.
It is inversely proportional; a larger standard deviation produces a small kurtosis (smaller peak, more spread out data) and a smaller standard deviation produces a larger kurtosis (larger peak, data more centrally located).
The correlation between an asset's real rate of return and its risk (as measured by its standard deviation) is usually: