You have to use logarithms (logs).Here are a few handy tools:If [ C = D ], then [ log(C) = log(D) ]log(AB) = log(A) + log(B)log(A/B) = log(A) - log(B)log(Np) = p times log(N)
School..........
how do you i really need to now
she or he is a penguin on st math . st math is a website for children that are smart
Find I = ∫ sec³ x dx. The answer is I = ½ [ log(sec x + tan x) + sec x tan x ]. * Here is how we may find it: Letting s = sec x, and t = tan x, we have, s² = 1 + t², dt = s² dx = (1 + t²) dx, and ds = st dx. Then, we obtain, dI = s³ dx = s dt. * Now, d(st) = s dt + t ds = dI + t ds = dI + st² dx = dI + s(s² - 1)dx = dI + s³ dx - s dx = 2dI - s dx; whence, 2dI = s dx + d(st). * Also, we have, s = (s² + st) / (s + t), whence s dx = (s² + st) dx / (s + t) = (dt + ds) / (s + t) = d(s + t) / (s + t) = d log(s + t). This gives us, 2dI = d log(s + t) + d(st). Integrating, we easily obtain, I = ½ [ log(s + t) + st ], which is the answer we sought. * Checking that we have arrived at the correct answer, we differentiate back: d(st) / dx = (st)'= st' + ts' = s³ + st² = 2s³ - s. d log(s + t) / dx = log'(s + t) = (s + t)' / (s + t) = (st + s²) / (s + t) = s. Thus, 2I' = [ st + log(s + t) ]' = 2s³; and I' = ½ [ st + log(s + t) ]' = s³, confirming that our answer is correct.
It is always easy to do things if you dont know your time tables in year 2 your kid needs to re pet!
how do you logout from st math
St. Severin's Old Log Church was created in 1851.
Yes it is only for schools who have ST math website.
You have to use logarithms (logs).Here are a few handy tools:If [ C = D ], then [ log(C) = log(D) ]log(AB) = log(A) + log(B)log(A/B) = log(A) - log(B)log(Np) = p times log(N)
There are no patron saints of math. However, there are patrons of mathematicians - St. Barbara and St. Hubert of Liege.
Sometimes you need to take logs, or antilogs, on both sides of an equation. Sometimes you need to apply certain common logarithmic identities, especially: log(xy) = log x + log y log (x/y) = log x - log y log (ab) = b log a
eag72qhy85wmf6
fr
Matthew is not the patron saint of math. There are no patron saints of math. However, there are patrons of mathematicians - St. Barbara and St. Hubert of Liege.
it is the simplistically math division tokens
Exponent, expression, e (natural log)