If repeats are allowed than an infinite number of combinations is possible.
61
There are only five combinations: 1234, 1235, 1245, 1345 and 2345.
To calculate the number of possible combinations from 10 items, you can use the formula for combinations, which is nCr = n! / r!(n-r)!. In this case, n is the total number of items (10) and r is the number of items you are choosing in each combination (which can range from 1 to 10). So, if you are considering all possible combinations (r=1 to 10), the total number of combinations would be 2^10, which is 1024.
im assuming that any charcter can be a number or a letter: (24letters*10 possible numbers)^(4 digits)= 3317760000 possible combinations.
Since a number can have infinitely many digits, there are infinitely many possible combinations.
35
There are infinitely many numbers and so infinitely many possible combinations.
2^n possible combinations
If repeats are allowed than an infinite number of combinations is possible.
There are countless possible liquid combinations, depending on the types of liquids you are considering (water, juice, alcohol, etc.) and how many you want to mix together. The number of combinations would be exponential, as each additional liquid increases the number of possible combinations exponentially.
61
The number of combinations - not to be confused with the number of permutations - is 2*21 = 42.
Just 4: 123, 124, 134 and 234. The order of the numbers does not matter with combinations. If it does, then they are permutations, not combinations.
As there are 26 letters in the alphabet. You can calculate the number of combinations by multiplying 26x26x26, giving you the answer 17576.
There are only five combinations: 1234, 1235, 1245, 1345 and 2345.
If the numbers can be repeated and the numbers are 0-9 then there are 1000 different combinations.