Say you have the letters A,B, and C. Here are all the possible combinations.
* ABC * ACB * BAC * BCA * CAB * CBA So, 6 if you don't repeat any of the letters. If you DO repeat letters, then simply take the number of letters you have, (3 for instance), and multiply it to the power of the number of letters you have. So, for 3 letters, the formula would be 33 . Or if you had 4 letters it would be 44 and so on.
3,124,550 possible combinations
87400 combinations
im assuming that any charcter can be a number or a letter: (24letters*10 possible numbers)^(4 digits)= 3317760000 possible combinations.
When trying to work out how many different combinations there are, you need to know how many options there are for each value. If the password only contains lower case letters, then we have 26 options for each value. For each letter in the password, there are 26 options, so the total number of possible options is 26x26x26x26x26x26 or 266 This equals 308,915,776 so there are 308,915,776 possible different combinations of six letters.
256 iThink * * * * * It depends on combinations of how many. There is 1 combination of 4 letters out of 4, 4 combinations of 3 letters out of 4, 6 combinations of 2 letters out of 4, 4 combinations of 1 letter out of 4. Than makes 15 (= 24-1) in all. Well below the 256 suggested by the previous answer.
24
Starting with three different letters, six two-letter combinations can be made, if the order of the two letters is important. Only three combinations can be made if the order of the two letters is not important. Example: ABC AB AC BA BC CA CB - six variations But if (for your purposes) BA is the same as AB, Then there are only three: AB AC BC
3,124,550 possible combinations
As there are 26 letters in the alphabet. You can calculate the number of combinations by multiplying 26x26x26, giving you the answer 17576.
10
6
7,893,600 (seven million, 8 hundred ninety-three thousand, 600) combinations in English.
Four outcomes, three combinations.
35,152,000 (assuming that 000 is a valid number, and that no letter combinations are disallowed for offensive connotations.) Also, no letters are disallowed because of possible confusion between letters and numbers eg 0 and O.
it is 26
Four combinations: tam ham mat hat Hope it helps (:!
To calculate the total number of possible combinations for a license plate using 3 letters and 3 numbers, we need to multiply the number of options for each character position. For letters, there are 26 options (A-Z), and for numbers, there are 10 options (0-9). Therefore, the total number of combinations can be calculated as 26 (letters) * 26 (letters) * 26 (letters) * 10 (numbers) * 10 (numbers) * 10 (numbers) = 17,576,000 possible combinations.